--- language: - pt license: apache-2.0 tags: - generated_from_trainer - pt - robust-speech-event datasets: - common_voice model-index: - name: sew-tiny-portuguese-cv results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6 type: common_voice args: pt metrics: - name: Test WER type: wer value: 30.02 - name: Test CER type: cer value: 10.34 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: sv metrics: - name: Test WER type: wer value: 56.46 - name: Test CER type: cer value: 22.94 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: pt metrics: - name: Test WER type: wer value: 57.17 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: pt metrics: - name: Test WER type: wer value: 61.3 --- # sew-tiny-portuguese-cv This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.5110 - Wer: 0.2842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 40000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | No log | 4.92 | 1000 | 0.8468 | 0.6494 | | 3.4638 | 9.85 | 2000 | 0.4978 | 0.3815 | | 3.4638 | 14.78 | 3000 | 0.4734 | 0.3417 | | 0.9904 | 19.7 | 4000 | 0.4577 | 0.3344 | | 0.9904 | 24.63 | 5000 | 0.4376 | 0.3170 | | 0.8849 | 29.55 | 6000 | 0.4225 | 0.3118 | | 0.8849 | 34.48 | 7000 | 0.4354 | 0.3080 | | 0.819 | 39.41 | 8000 | 0.4434 | 0.3004 | | 0.819 | 44.33 | 9000 | 0.4710 | 0.3132 | | 0.7706 | 49.26 | 10000 | 0.4497 | 0.3064 | | 0.7706 | 54.19 | 11000 | 0.4598 | 0.3100 | | 0.7264 | 59.11 | 12000 | 0.4271 | 0.3013 | | 0.7264 | 64.04 | 13000 | 0.4333 | 0.2959 | | 0.6909 | 68.96 | 14000 | 0.4554 | 0.3019 | | 0.6909 | 73.89 | 15000 | 0.4444 | 0.2888 | | 0.6614 | 78.81 | 16000 | 0.4734 | 0.3081 | | 0.6614 | 83.74 | 17000 | 0.4820 | 0.3058 | | 0.6379 | 88.67 | 18000 | 0.4416 | 0.2950 | | 0.6379 | 93.59 | 19000 | 0.4614 | 0.2974 | | 0.6055 | 98.52 | 20000 | 0.4812 | 0.3018 | | 0.6055 | 103.45 | 21000 | 0.4700 | 0.3018 | | 0.5823 | 108.37 | 22000 | 0.4726 | 0.2999 | | 0.5823 | 113.3 | 23000 | 0.4979 | 0.2887 | | 0.5597 | 118.23 | 24000 | 0.4813 | 0.2980 | | 0.5597 | 123.15 | 25000 | 0.4968 | 0.2972 | | 0.542 | 128.08 | 26000 | 0.5331 | 0.3059 | | 0.542 | 133.0 | 27000 | 0.5046 | 0.2978 | | 0.5185 | 137.93 | 28000 | 0.4882 | 0.2922 | | 0.5185 | 142.85 | 29000 | 0.4945 | 0.2938 | | 0.499 | 147.78 | 30000 | 0.4971 | 0.2913 | | 0.499 | 152.71 | 31000 | 0.4948 | 0.2873 | | 0.4811 | 157.63 | 32000 | 0.4924 | 0.2918 | | 0.4811 | 162.56 | 33000 | 0.5128 | 0.2911 | | 0.4679 | 167.49 | 34000 | 0.5098 | 0.2892 | | 0.4679 | 172.41 | 35000 | 0.4966 | 0.2863 | | 0.456 | 177.34 | 36000 | 0.5033 | 0.2839 | | 0.456 | 182.27 | 37000 | 0.5114 | 0.2875 | | 0.4453 | 187.19 | 38000 | 0.5154 | 0.2859 | | 0.4453 | 192.12 | 39000 | 0.5102 | 0.2847 | | 0.4366 | 197.04 | 40000 | 0.5110 | 0.2842 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0