File size: 4,637 Bytes
bc1a2c8 e80597c bc1a2c8 610f0e7 bc1a2c8 1c5a511 bc1a2c8 74ed492 bc1a2c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
language:
- pt
license: apache-2.0
tags:
- generated_from_trainer
- pt
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: sew-tiny-portuguese-cv8
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: pt
metrics:
- name: Test WER
type: wer
value: 33.71
- name: Test CER
type: cer
value: 10.69
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: sv
metrics:
- name: Test WER
type: wer
value: 52.79
- name: Test CER
type: cer
value: 20.98
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sew-tiny-portuguese-cv8
This model is a fine-tuned version of [lgris/sew-tiny-pt](https://huggingface.co/lgris/sew-tiny-pt) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4082
- Wer: 0.3053
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 40000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log | 1.93 | 1000 | 2.9134 | 0.9767 |
| 2.9224 | 3.86 | 2000 | 2.8405 | 0.9789 |
| 2.9224 | 5.79 | 3000 | 2.8094 | 0.9800 |
| 2.8531 | 7.72 | 4000 | 2.7439 | 0.9891 |
| 2.8531 | 9.65 | 5000 | 2.7057 | 1.0159 |
| 2.7721 | 11.58 | 6000 | 2.7235 | 1.0709 |
| 2.7721 | 13.51 | 7000 | 2.5931 | 1.1035 |
| 2.6566 | 15.44 | 8000 | 2.2171 | 0.9884 |
| 2.6566 | 17.37 | 9000 | 1.2399 | 0.8081 |
| 1.9558 | 19.31 | 10000 | 0.9045 | 0.6353 |
| 1.9558 | 21.24 | 11000 | 0.7705 | 0.5533 |
| 1.4987 | 23.17 | 12000 | 0.7068 | 0.5165 |
| 1.4987 | 25.1 | 13000 | 0.6641 | 0.4718 |
| 1.3811 | 27.03 | 14000 | 0.6043 | 0.4470 |
| 1.3811 | 28.96 | 15000 | 0.5532 | 0.4268 |
| 1.2897 | 30.89 | 16000 | 0.5371 | 0.4101 |
| 1.2897 | 32.82 | 17000 | 0.5924 | 0.4150 |
| 1.225 | 34.75 | 18000 | 0.4949 | 0.3894 |
| 1.225 | 36.68 | 19000 | 0.5591 | 0.4045 |
| 1.193 | 38.61 | 20000 | 0.4927 | 0.3731 |
| 1.193 | 40.54 | 21000 | 0.4922 | 0.3712 |
| 1.1482 | 42.47 | 22000 | 0.4799 | 0.3662 |
| 1.1482 | 44.4 | 23000 | 0.4846 | 0.3648 |
| 1.1201 | 46.33 | 24000 | 0.4770 | 0.3623 |
| 1.1201 | 48.26 | 25000 | 0.4530 | 0.3426 |
| 1.0892 | 50.19 | 26000 | 0.4523 | 0.3527 |
| 1.0892 | 52.12 | 27000 | 0.4573 | 0.3443 |
| 1.0583 | 54.05 | 28000 | 0.4488 | 0.3353 |
| 1.0583 | 55.98 | 29000 | 0.4295 | 0.3285 |
| 1.0319 | 57.92 | 30000 | 0.4321 | 0.3220 |
| 1.0319 | 59.85 | 31000 | 0.4244 | 0.3236 |
| 1.0076 | 61.78 | 32000 | 0.4197 | 0.3201 |
| 1.0076 | 63.71 | 33000 | 0.4230 | 0.3208 |
| 0.9851 | 65.64 | 34000 | 0.4090 | 0.3127 |
| 0.9851 | 67.57 | 35000 | 0.4088 | 0.3133 |
| 0.9695 | 69.5 | 36000 | 0.4123 | 0.3088 |
| 0.9695 | 71.43 | 37000 | 0.4017 | 0.3090 |
| 0.9514 | 73.36 | 38000 | 0.4184 | 0.3086 |
| 0.9514 | 75.29 | 39000 | 0.4075 | 0.3043 |
| 0.944 | 77.22 | 40000 | 0.4082 | 0.3053 |
### Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.11.0
|