File size: 1,660 Bytes
0e76abd 94b73c1 ceb4afb d21ebed 6047051 d21ebed 15e142f d21ebed 6047051 a96d4c0 6047051 15e142f 1759a25 ceb4afb 94b73c1 4fd02c8 94b73c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
datasets:
- huggan/few-shot-aurora
---
---
datasets:
- huggan/few-shot-aurora
---
<center>
![Aurora](https://huggingface.co/li-yan/diffusion-aurora-256/resolve/main/doc/Aurora.gif)
![Aurora Photo](https://huggingface.co/li-yan/diffusion-aurora-256/resolve/main/doc/Aurora-by-Li-Yan.jpg)
</center>
# Description
Have you ever seen aurora with your own eyes? Check the picture I got in Alaska in Winter. Beautiful right?
However, aurora is so rare that we can hardly see it even in the very north places like Alaska.
Don't worry. Now we have generative models!!!
# Model Details
This model is trained from dataset [huggan/few-shot-aurora](https://huggingface.co/datasets/huggan/few-shot-aurora).
The training method is modified from this [example](https://colab.sandbox.google.com/github/huggingface/notebooks/blob/main/diffusers/training_example.ipynb).
You can check my training source code here: [<img src="https://colab.research.google.com/assets/colab-badge.svg">](https://colab.sandbox.google.com/github/Li-Yan/Diffusion-Model/blob/main/li_yan_diffusers_training_accelerate.ipynb)
# Usage
## Option 1 (Slow)
```python
from diffusers import DDPMPipeline
pipeline = DDPMPipeline.from_pretrained('li-yan/diffusion-aurora-256')
image = pipeline().images[0]
image
```
## Option 2 (Fast)
```python
from diffusers import DiffusionPipeline, DDIMScheduler
scheduler = DDIMScheduler.from_pretrained('li-yan/diffusion-aurora-256')
scheduler.set_timesteps(num_inference_steps=40)
pipeline = DiffusionPipeline.from_pretrained(
'li-yan/diffusion-aurora-256', scheduler=scheduler)
images = pipeline(num_inference_steps=40).images
images[0]
``` |