File size: 3,377 Bytes
003df84 91ea587 003df84 ce2f998 91ea587 003df84 2c5b335 51aa133 75da72f 51aa133 2c5b335 6cebfce ff83d6b e57f0c8 d7e915d e57f0c8 003df84 d8815ec 1392e38 b64cde6 d8815ec 02a7381 b64cde6 6640139 02a7381 b64cde6 3793a94 e57f0c8 003df84 ff83d6b e57f0c8 003df84 76f454c 003df84 76f454c b0d4dab e65ef91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: creativeml-openrail-m
tags:
- pytorch
- diffusers
- stable-diffusion
- text-to-image
- keyboard
widget:
- text: a photo of cyberboard keyboard
datasets:
- li-yan/crazy-keyboard
---
<center>
![crazy-keyboard](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/crazy-keyboard.gif)
</center>
Are you a fan of keyboards? Above is my Cyberboard Keyboard that I used for my dialy life. **It is crazy right?**
![crazy-keyboard](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/am-cb-r4.gif)
Now I bring this keyboard into the Stable Diffusion, and its images can be generate by the model.
## Description
This is a Stable Diffusion model fine-tuned on dataset li-yan/crazy-keyboard images for the different breeds of cats.
#### Prompt 1: "a photo of cyberboard keyboard"
| ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/pretrained-prompt1.png) | ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/fine-tuned-prompt1.png) |
|:--:|:--:|
| result of pretrained model | result of fine tuned model |
#### Prompt 2: "in the forest, a cyberboard keyboard is on the ground"
| ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/pretrained-prompt2.png) | ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/fine-tuned-prompt2.png) |
|:--:|:--:|
| result of pretrained model | result of fine tuned model |
#### Prompt 3: "a cyberboard keyboard in front of the Golden Gate Bright"
| ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/pretrained-prompt3.png) | ![image-fine-tuned-1](https://huggingface.co/li-yan/stable-diffusion-crazy-keyboard/resolve/main/docs/generated/fine-tuned-prompt3.png) |
|:--:|:--:|
| result of pretrained model | result of fine tuned model |
# Details
Trained by li-yan on the [li-yan/crazy-keyboard](li-yan/crazy-keyboard) dataset.
This model is fine tuned from pretrained model CompVis/stable-diffusion-v1-4 using DreamBooth model.
More for DreamBooth model, please refer to https://dreambooth.github.io/.
## Usage
```python
pip install -qqU diffusers accelerate
import torch
from diffusers import StableDiffusionPipeline
pipe = StableDiffusionPipeline.from_pretrained(model_id)
# set prompt
prompt = "a photo of cyberboard keyboard" #@param
guidance_scale=12 #@param {type:"integer"}
num_inference_steps = 50 #@param {type:"integer"}
# Run the pipeline, showing some of the available arguments
pipe_output = pipe(
prompt=prompt, # What to generate
negative_prompt="Oversaturated, blurry, low quality", # What NOT to generate
height=480, width=640, # Specify the image size
guidance_scale=guidance_scale, # How strongly to follow the prompt
num_inference_steps=num_inference_steps, # How many steps to take
)
# View the resulting image
pipe_output.images[0]
```
## Fine Tune Source Code
[<img src="https://colab.research.google.com/assets/colab-badge.svg">](https://colab.research.google.com/github/Li-Yan/Diffusion-Model/blob/main/Li_Yan_Stable_Defussion_Fune_Tuning.ipynb) |