--- license: apache-2.0 --- # Dataset Japanese subset of the [mC4](https://huggingface.co/datasets/mc4) dataset # Training Trained for 3000 steps on top of the MPT 7b checkpoint [mosaicml/mpt-7b](https://huggingface.co/mosaicml/mpt-7b) # How to load Before running this model, please install the following pip package: ```bash pip install einops ``` To load the model, run the following command. ```python from transformers import AutoModelForCausalLM model_name = "lightblue/japanese-mpt-7b" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype='auto', trust_remote_code=True ) ``` To run this model, you may need to load it in a lower precision in order for it to fit onto your GPU. We found for a T4 GPU, it requires loading the model in 8-bit precision. To load the model in 8-bit and 4-bit, please install the following pip packages: ```bash pip install bitsandbytes accelerate ``` Caution - you will also need enough RAM to load the model. We estimate loading this model requires ~30GB.
Code to load the model in 8 bit ```python from transformers import AutoModelForCausalLM model_name = "lightblue/japanese-mpt-7b" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype='auto', load_in_8bit=True, trust_remote_code=True ) ```
Code to load the model in 4 bit ```python from transformers import AutoModelForCausalLM model_name = "lightblue/japanese-mpt-7b" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype='auto', load_in_4bit=True, trust_remote_code=True ) ```

# How to use ```python from transformers import AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompt = """A: こんにちは B: こんにちは A: 好きなスポーツは何ですか? B: サッカーです A: 好きな食べ物は何ですか? B:""" pipe(prompt, temperature=0, do_sample=False, return_full_text=False, max_new_tokens=32) # [{"generated_text": " カレーです # A: 好きな色は何ですか? # B: 赤です"}] ```