--- base_model: openai/whisper-large-v3 datasets: - google/fleurs language: - pl license: apache-2.0 metrics: - wer tags: - hf-asr-leaderboard - generated_from_trainer model-index: - name: Whisper Large V3 pl Fleurs Aug 2 - Chee Li results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: pl_pl split: None args: 'config: pl split: test' metrics: - type: wer value: 402.6139222812413 name: Wer --- # Whisper Large V3 pl Fleurs Aug 2 - Chee Li This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.1295 - Wer: 402.6139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - training_steps: 6000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.0563 | 1.2579 | 1000 | 0.1102 | 448.8748 | | 0.0144 | 2.5157 | 2000 | 0.1207 | 354.0117 | | 0.0035 | 3.7736 | 3000 | 0.1205 | 514.6701 | | 0.0009 | 5.0314 | 4000 | 0.1263 | 391.4104 | | 0.0003 | 6.2893 | 5000 | 0.1280 | 385.1901 | | 0.0001 | 7.5472 | 6000 | 0.1295 | 402.6139 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1