File size: 2,188 Bytes
8ddf596
 
97f00ee
 
aee7d5e
fd45a4b
198e58d
fd45a4b
97f00ee
 
92ec36a
 
 
8ddf596
 
198e58d
 
 
8ddf596
198e58d
8ddf596
198e58d
 
 
 
 
 
 
 
 
 
 
 
 
 
f09b000
 
 
 
198e58d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
library_name: transformers
license: apache-2.0
datasets:
- liswei/Taiwan-Text-Excellence-2B
base_model:
- liswei/Taiwan-ELM
- apple/OpenELM-270M
language:
- zh
metrics:
- perplexity
pipeline_tag: text-generation
---

<center>
    <img src="https://huggingface.co/liswei/Taiwan-ELM/resolve/main/Taiwan%20ELM%20Logo.jpeg" alt="Efficient LLM for Taiwan">
</center>

> Efficient LLM for Taiwan

# Taiwan ELM

Taiwan ELM is a family of Efficient LLMs for Taiwan base on [apple/OpenELM](https://huggingface.co/apple/OpenELM).
The project aims to provide an efficient model for researchers without access to large-scale computing resources.

The model is trained using a custom fork of [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) on 2B Traditional Chinese tokens and 500K instruction samples.
We will extend the model to train on larger data sets and different base models if there is sufficient demand.

## What is being released?

We release both pre-trained base models and instruction tuned variants with 270M and 1.1B parameters.
Along with the model, datasets used to train the base and instruction-tuned models are also released.

List of released models:
* [Taiwan-ELM-270M](https://huggingface.co/liswei/Taiwan-ELM-270M)
* [Taiwan-ELM-1_1B](https://huggingface.co/liswei/Taiwan-ELM-1_1B)
* [Taiwan-ELM-270M-Instruct](https://huggingface.co/liswei/Taiwan-ELM-270M-Instruct)
* [Taiwan-ELM-1_1B-Instruct](https://huggingface.co/liswei/Taiwan-ELM-1_1B-Instruct)

List of released datasets:
* [liswei/Taiwan-Text-Excellence-2B](https://huggingface.co/datasets/liswei/Taiwan-Text-Excellence-2B)
* [liswei/PromptPair-TW](https://huggingface.co/datasets/liswei/PromptPair-TW)

## Usage Examples

We adapt the LLaMA2 template:
```jinja2
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>

{{ user_message }} [/INST]
```

The model could be load via `AutoModelForCausalLM` with `trust_remote_code=True`:
```python
taiwanelm_270m = AutoModelForCausalLM.from_pretrained("liswei/Taiwan-ELM-270M", trust_remote_code=True)
```

We also support additional generation methods and speculative generation, please find reference at [OpenELM#usage](https://huggingface.co/apple/OpenELM#usage).