File size: 2,188 Bytes
8ddf596 97f00ee aee7d5e fd45a4b 198e58d fd45a4b 97f00ee 92ec36a 8ddf596 198e58d 8ddf596 198e58d 8ddf596 198e58d f09b000 198e58d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
library_name: transformers
license: apache-2.0
datasets:
- liswei/Taiwan-Text-Excellence-2B
base_model:
- liswei/Taiwan-ELM
- apple/OpenELM-270M
language:
- zh
metrics:
- perplexity
pipeline_tag: text-generation
---
<center>
<img src="https://huggingface.co/liswei/Taiwan-ELM/resolve/main/Taiwan%20ELM%20Logo.jpeg" alt="Efficient LLM for Taiwan">
</center>
> Efficient LLM for Taiwan
# Taiwan ELM
Taiwan ELM is a family of Efficient LLMs for Taiwan base on [apple/OpenELM](https://huggingface.co/apple/OpenELM).
The project aims to provide an efficient model for researchers without access to large-scale computing resources.
The model is trained using a custom fork of [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) on 2B Traditional Chinese tokens and 500K instruction samples.
We will extend the model to train on larger data sets and different base models if there is sufficient demand.
## What is being released?
We release both pre-trained base models and instruction tuned variants with 270M and 1.1B parameters.
Along with the model, datasets used to train the base and instruction-tuned models are also released.
List of released models:
* [Taiwan-ELM-270M](https://huggingface.co/liswei/Taiwan-ELM-270M)
* [Taiwan-ELM-1_1B](https://huggingface.co/liswei/Taiwan-ELM-1_1B)
* [Taiwan-ELM-270M-Instruct](https://huggingface.co/liswei/Taiwan-ELM-270M-Instruct)
* [Taiwan-ELM-1_1B-Instruct](https://huggingface.co/liswei/Taiwan-ELM-1_1B-Instruct)
List of released datasets:
* [liswei/Taiwan-Text-Excellence-2B](https://huggingface.co/datasets/liswei/Taiwan-Text-Excellence-2B)
* [liswei/PromptPair-TW](https://huggingface.co/datasets/liswei/PromptPair-TW)
## Usage Examples
We adapt the LLaMA2 template:
```jinja2
<s>[INST] <<SYS>>
{{ system_prompt }}
<</SYS>>
{{ user_message }} [/INST]
```
The model could be load via `AutoModelForCausalLM` with `trust_remote_code=True`:
```python
taiwanelm_270m = AutoModelForCausalLM.from_pretrained("liswei/Taiwan-ELM-270M", trust_remote_code=True)
```
We also support additional generation methods and speculative generation, please find reference at [OpenELM#usage](https://huggingface.co/apple/OpenELM#usage). |