lizardwine commited on
Commit
47ae6a2
β€’
1 Parent(s): 106afa0

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +191 -3
README.md CHANGED
@@ -1,3 +1,191 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # 🦠 Melanoma Detection Model
5
+
6
+ ## πŸ“„ Overview
7
+
8
+ πŸ€– **Model Name:** Melanoma Detection Model
9
+
10
+ 🧠 **Model Type:** Convolutional Neural Network (CNN)
11
+
12
+ πŸ“Š **Input:** 224x224 RGB images of skin lesions
13
+
14
+ πŸ”’ **Output:** A binary classification (Melanoma or Not Melanoma)
15
+
16
+ 🎯 **Purpose:** To identify and classify skin lesions as melanoma or non-melanoma with high accuracy
17
+
18
+ ☁️ **Download:** Click [here](https://example.com/melanoma_detection_model/download) to download
19
+
20
+ ---
21
+
22
+ ## πŸ“š Description
23
+
24
+ This model is designed to detect melanoma from skin lesion images. It processes input images of size 224x224 pixels and outputs a binary classification indicating whether the lesion is melanoma or not. The model is trained to differentiate between malignant melanoma and benign conditions.
25
+
26
+ ---
27
+
28
+ ## πŸ” Use Cases
29
+
30
+ 1. **Medical Diagnosis:** πŸ₯ Assisting dermatologists in diagnosing melanoma from images.
31
+ 2. **Skin Cancer Screening:** 🩺 Enhancing early detection efforts in large-scale skin cancer screening programs.
32
+ 3. **Patient Monitoring:** πŸ‘©β€βš•οΈ Helping in monitoring patients with a history of melanoma or high risk.
33
+
34
+ ---
35
+
36
+ ## πŸ“ˆ Performance
37
+
38
+ πŸ” **Accuracy:** ~99% on the [Skin Cancer Dataset](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset)
39
+
40
+ πŸ•’ **Latency:** Suitable for real-time analysis in clinical settings.
41
+
42
+ ---
43
+
44
+ ## πŸ› οΈ Technical Details
45
+ - **Based on:** [MobileNetV2](https://www.kaggle.com/models/google/mobilenet-v2)
46
+ - **Architecture:** Convolutional Neural Network (CNN)
47
+ - **Layers:** Convolutional layers, pooling layers, fully connected layers
48
+ - **Activation Functions:** ReLU, Sigmoid
49
+
50
+ ---
51
+
52
+ ## πŸ“₯ Input Format
53
+
54
+ - **Type:** RGB image
55
+ - **Shape:** 224x224 pixels
56
+ - **Range:** 0-1 (pixel intensity)
57
+
58
+ ---
59
+
60
+ ## πŸ“€ Output Format
61
+
62
+ - **Type:** Binary classification
63
+ - **Shape:** Scalar value
64
+ - **Range:** 0 (Not Melanoma), 1 (Melanoma)
65
+
66
+ ---
67
+
68
+ ## 🧩 Model Training
69
+ - **Dataset:** [Skin Cancer Dataset](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset) πŸ“š
70
+ - **First step:**
71
+ - **Training Epochs:** 50
72
+ - **Batch Size:** 32
73
+ - **Optimizer:** Adam
74
+ - **Learning rate:** 1e-5
75
+ - **Layers:** Only last layer
76
+ - **Second step:**
77
+ - **Training Epochs:** 5
78
+ - **Batch Size:** 32
79
+ - **Optimizer:** Adam
80
+ - **Learning rate:** 1e-5
81
+ - **Layers:** All layers
82
+ ---
83
+
84
+ ## πŸ’‘ How to Use
85
+
86
+ 1. **Preprocess the Image:** Resize and normalize the image to 224x224 pixels with pixel values between 0 and 1.
87
+ 2. **Feed the Image:** Input the preprocessed image into the model.
88
+ 3. **Interpret the Output:** Analyze the output to determine if the lesion is melanoma or not.
89
+
90
+ ### Loading the Model
91
+
92
+ To use the model, first, load it using your preferred framework.
93
+
94
+ ```python
95
+ import tensorflow as tf
96
+
97
+ # Load the pre-trained model
98
+ model = tf.keras.models.load_model('path/to/Melanoma-003.keras')
99
+ ```
100
+
101
+ ### Preprocessing the Input
102
+
103
+ Preprocess the input image to fit the model's requirements.
104
+
105
+ ```python
106
+ import numpy as np
107
+ from tensorflow.keras.preprocessing import image
108
+
109
+ def preprocess_image(img_path):
110
+ # Load the image
111
+ img = image.load_img(img_path, target_size=(224, 224))
112
+ # Convert to numpy array
113
+ img_array = image.img_to_array(img)
114
+ # Normalize the image
115
+ img_array = img_array / 255.0
116
+ # Reshape to add batch dimension
117
+ img_array = np.expand_dims(img_array, axis=0)
118
+ return img_array
119
+
120
+ # Example usage
121
+ img_path = 'path/to/your/image.jpg'
122
+ processed_image = preprocess_image(img_path)
123
+ ```
124
+
125
+ ### Making Predictions
126
+
127
+ Use the model to predict if the lesion is melanoma.
128
+
129
+ ```python
130
+ # Predict the class
131
+ prediction = model.predict(processed_image)
132
+
133
+ # Interpret the result
134
+ if prediction[0] > 0.5:
135
+ print('The lesion is classified as Melanoma.')
136
+ else:
137
+ print('The lesion is classified as Not Melanoma.')
138
+ ```
139
+
140
+ ### Full Example
141
+
142
+ Combining all steps into a single example.
143
+
144
+ ```python
145
+ import tensorflow as tf
146
+ import numpy as np
147
+ from tensorflow.keras.preprocessing import image
148
+
149
+ # Load the pre-trained model
150
+ model = tf.keras.models.load_model('path/to/MelanomaDetectionModel.h5')
151
+
152
+ def preprocess_image(img_path):
153
+ img = image.load_img(img_path, target_size=(224, 224))
154
+ img_array = image.img_to_array(img)
155
+ img_array = img_array / 255.0
156
+ img_array = np.expand_dims(img_array, axis=0)
157
+ return img_array
158
+
159
+ img_path = 'path/to/your/image.jpg'
160
+ processed_image = preprocess_image(img_path)
161
+
162
+ prediction = model.predict(processed_image)
163
+ if prediction[0] > 0.5:
164
+ print('The lesion is classified as Melanoma.')
165
+ else:
166
+ print('The lesion is classified as Not Melanoma.')
167
+ ```
168
+
169
+ ---
170
+
171
+ ## ⚠️ Limitations
172
+
173
+ - **Image Quality:** Performance may be affected by poor-quality or low-resolution images.
174
+ - **Generalization:** Model performance may vary with images not represented in the training data.
175
+
176
+ ---
177
+
178
+ ## πŸ‘₯ Contributors
179
+
180
+ - **Developer:** Lizardwine (x@lizardwine.com)
181
+ - **Organization:** lizardwine
182
+ - **Date:** 05/09/2024
183
+
184
+ ---
185
+
186
+ ## πŸ“ References
187
+
188
+ - Skin Cancer Dataset: [Link](https://www.kaggle.com/datasets/shashanks1202/skin-cancer-dataset)
189
+ - MobileNetV2: [Link](https://www.kaggle.com/models/google/mobilenet-v2)
190
+
191
+ ---