File size: 5,119 Bytes
c48312d
 
 
bb939be
 
c48312d
 
 
2f2b2b1
 
 
 
c48312d
c018164
 
 
 
 
 
1687484
 
1acd332
 
 
c018164
 
 
 
 
 
 
bf11942
c018164
 
 
 
 
 
 
 
 
 
 
93fcb3c
c018164
 
 
 
d5e0832
c018164
93fcb3c
c018164
 
 
2f2b2b1
 
 
 
 
 
 
 
 
 
 
 
 
 
c018164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0db0c8c
 
2f2b2b1
 
 
 
c018164
2f2b2b1
 
 
 
 
 
 
 
 
 
c018164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
language:
- en
datasets:
- liuhaotian/LLaVA-Instruct-150K
pipeline_tag: image-to-text
inference: false
arxiv: 2304.08485
license: llama2
tags:
- vision
- image-text-to-text
---
# LLaVA Model Card

![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)

Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).

Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)

Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)


## Model details

**Model type:**
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
It is an auto-regressive language model, based on the transformer architecture.

**Model date:**
LLaVA-v1.5-7B was trained in September 2023.

**Paper or resources for more information:**
https://llava-vl.github.io/

## How to use the model

First, make sure to have `transformers >= 4.35.3`. 
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:

### Using `pipeline`:

Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.

```python
from transformers import pipeline
from PIL import Image    
import requests

model_id = "llava-hf/llava-1.5-7b-hf"
pipe = pipeline("image-to-text", model=model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)

# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

outputs = pipe(image, prompt=prompt, generate_kwargs={"max_new_tokens": 200})
print(outputs)
>>> {"generated_text": "\nUSER: What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud\nASSISTANT: Lava"}
```

### Using pure `transformers`:

Below is an example script to run generation in `float16` precision on a GPU device:

```python
import requests
from PIL import Image

import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration

model_id = "llava-hf/llava-1.5-7b-hf"
model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True, 
).to(0)

processor = AutoProcessor.from_pretrained(model_id)

# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image") 
conversation = [
    {

      "role": "user",
      "content": [
          {"type": "text", "text": "What are these?"},
          {"type": "image"},
        ],
    },
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)

image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(prompt, raw_image, return_tensors='pt').to(0, torch.float16)

output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
```

### Model optimization

#### 4-bit quantization through `bitsandbytes` library

First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with: 

```diff
model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   load_in_4bit=True
)
```

#### Use Flash-Attention 2 to further speed-up generation

First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with: 

```diff
model = LlavaForConditionalGeneration.from_pretrained(
    model_id, 
    torch_dtype=torch.float16, 
    low_cpu_mem_usage=True,
+   use_flash_attention_2=True
).to(0)
```

## License
Llama 2 is licensed under the LLAMA 2 Community License, 
Copyright (c) Meta Platforms, Inc. All Rights Reserved.