Update README.md
Browse files
README.md
CHANGED
@@ -55,6 +55,34 @@ output = model.generate(**inputs, max_new_tokens=100)
|
|
55 |
print(processor.decode(output[0], skip_special_tokens=True))
|
56 |
```
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
### BibTeX entry and citation info
|
59 |
|
60 |
```bibtex
|
|
|
55 |
print(processor.decode(output[0], skip_special_tokens=True))
|
56 |
```
|
57 |
|
58 |
+
### Model optimization
|
59 |
+
|
60 |
+
#### 4-bit quantization through `bitsandbytes` library
|
61 |
+
|
62 |
+
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
63 |
+
|
64 |
+
```diff
|
65 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(
|
66 |
+
model_id,
|
67 |
+
torch_dtype=torch.float16,
|
68 |
+
low_cpu_mem_usage=True,
|
69 |
+
+ load_in_4bit=True
|
70 |
+
)
|
71 |
+
```
|
72 |
+
|
73 |
+
#### Use Flash-Attention 2 to further speed-up generation
|
74 |
+
|
75 |
+
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
76 |
+
|
77 |
+
```diff
|
78 |
+
model = LlavaNextForConditionalGeneration.from_pretrained(
|
79 |
+
model_id,
|
80 |
+
torch_dtype=torch.float16,
|
81 |
+
low_cpu_mem_usage=True,
|
82 |
+
+ use_flash_attention_2=True
|
83 |
+
).to(0)
|
84 |
+
```
|
85 |
+
|
86 |
### BibTeX entry and citation info
|
87 |
|
88 |
```bibtex
|