File size: 9,599 Bytes
41db880
 
 
51ad0b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
---
license: openrail
---

# Controlnet

Controlnet is an auxiliary model which augments pre-trained diffusion models with an additional conditioning.

Controlnet comes with multiple auxiliary models, each which allows a different type of conditioning

Controlnet's auxiliary models are trained with stable diffusion 1.5. Experimentally, the auxiliary models can be used with other diffusion models such as dreamboothed stable diffusion.

The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.

Some of the additional conditionings can be extracted from images via additional models. We extracted these
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/human_pose.git).

## Canny edge detection

Install opencv

```sh
$ pip install opencv-contrib-python
```

```python
import cv2
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
import numpy as np

image = Image.open('images/bird.png')
image = np.array(image)

low_threshold = 100
high_threshold = 200

image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-canny",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("bird", image).images[0]

image.save('images/bird_canny_out.png')
```

![bird](./images/bird.png)

![bird_canny](./images/bird_canny.png)

![bird_canny_out](./images/bird_canny_out.png)

## M-LSD Straight line detection

Install the additional controlnet models package.

```sh
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
```

```py
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
from human_pose import MLSDdetector

mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')

image = Image.open('images/room.png')

image = mlsd(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-mlsd",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("room", image).images[0]

image.save('images/room_mlsd_out.png')
```

![room](./images/room.png)

![room_mlsd](./images/room_mlsd.png)

![room_mlsd_out](./images/room_mlsd_out.png)

## Pose estimation

Install the additional controlnet models package.

```sh
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
```

```py
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
from human_pose import OpenposeDetector

openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')

image = Image.open('images/pose.png')

image = openpose(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-openpose",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("chef in the kitchen", image).images[0]

image.save('images/chef_pose_out.png')
```

![pose](./images/pose.png)

![openpose](./images/openpose.png)

![chef_pose_out](./images/chef_pose_out.png)

## Semantic Segmentation

Semantic segmentation relies on transformers. Transformers is a 
dependency of diffusers for running controlnet, so you should 
have it installed already.

```py
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
from PIL import Image
import numpy as np
from controlnet_utils import ade_palette
import torch
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")

image = Image.open("./images/house.png").convert('RGB')

pixel_values = image_processor(image, return_tensors="pt").pixel_values

with torch.no_grad():
  outputs = image_segmentor(pixel_values)

seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]

color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3

palette = np.array(ade_palette())

for label, color in enumerate(palette):
    color_seg[seg == label, :] = color

color_seg = color_seg.astype(np.uint8)

image = Image.fromarray(color_seg)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-seg",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("house", image).images[0]

image.save('./images/house_seg_out.png')
```

![house](images/house.png)

![house_seg](images/house_seg.png)

![house_seg_out](images/house_seg_out.png)

## Depth control

Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
you should have it installed already.

```py
from transformers import pipeline
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from PIL import Image
import numpy as np

depth_estimator = pipeline('depth-estimation')

image = Image.open('./images/stormtrooper.png')
image = depth_estimator(image)['depth']
image = np.array(image)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-depth",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("Stormtrooper's lecture", image).images[0]

image.save('./images/stormtrooper_depth_out.png')
```

![stormtrooper](./images/stormtrooper.png)

![stormtrooler_depth](./images/stormtrooper_depth.png)

![stormtrooler_depth_out](./images/stormtrooper_depth_out.png)


## Normal map

```py
from PIL import Image
from transformers import pipeline
import numpy as np
import cv2
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel

image = Image.open("images/toy.png").convert("RGB")

depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )

image = depth_estimator(image)['predicted_depth'][0]

image = image.numpy()

image_depth = image.copy()
image_depth -= np.min(image_depth)
image_depth /= np.max(image_depth)

bg_threhold = 0.4

x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
x[image_depth < bg_threhold] = 0

y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
y[image_depth < bg_threhold] = 0

z = np.ones_like(x) * np.pi * 2.0

image = np.stack([x, y, z], axis=2)
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
image = Image.fromarray(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-normal",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("cute toy", image).images[0]

image.save('images/toy_normal_out.png')
```

![toy](./images/toy.png)

![toy_normal](./images/toy_normal.png)

![toy_normal_out](./images/toy_normal_out.png)

## Scribble

Install the additional controlnet models package.

```sh
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
```

```py
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
from human_pose import HEDdetector

hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')

image = Image.open('images/bag.png')

image = hed(image, scribble=True)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-scribble",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("bag", image).images[0]

image.save('images/bag_scribble_out.png')
```

![bag](./images/bag.png)

![bag_scribble](./images/bag_scribble.png)

![bag_scribble_out](./images/bag_scribble_out.png)

## HED Boundary

Install the additional controlnet models package.

```sh
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
```

```py
from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
from human_pose import HEDdetector

hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')

image = Image.open('images/man.png')

image = hed(image)

controlnet = ControlNetModel.from_pretrained(
    "fusing/stable-diffusion-v1-5-controlnet-hed",
)

pipe = StableDiffusionControlNetPipeline.from_pretrained(
    "runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
)
pipe.to('cuda')

image = pipe("oil painting of handsome old man, masterpiece", image).images[0]

image.save('images/man_hed_out.png')
```

![man](./images/man.png)

![man_hed](./images/man_hed.png)

![man_hed_out](./images/man_hed_out.png)