File size: 2,591 Bytes
de8cba6 d3b36b0 de8cba6 d3b36b0 de8cba6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
base_model: dccuchile/tulio-chilean-spanish-bert
license: cc-by-4.0
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: not-ner-v1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# not-ner-v1
This model is a fine-tuned version of [dccuchile/tulio-chilean-spanish-bert](https://huggingface.co/dccuchile/tulio-chilean-spanish-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1680
- Accuracy: 0.9337
- Precision: 0.9334
- Recall: 0.9337
- F1: 0.9333
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.3465 | 0.0799 | 200 | 0.3024 | 0.8719 | 0.8787 | 0.8719 | 0.8737 |
| 0.2925 | 0.1599 | 400 | 0.2530 | 0.9045 | 0.9039 | 0.9045 | 0.9041 |
| 0.2362 | 0.2398 | 600 | 0.2383 | 0.9089 | 0.9084 | 0.9089 | 0.9085 |
| 0.239 | 0.3197 | 800 | 0.2083 | 0.9169 | 0.9163 | 0.9169 | 0.9163 |
| 0.2149 | 0.3997 | 1000 | 0.2640 | 0.9130 | 0.9150 | 0.9130 | 0.9109 |
| 0.2171 | 0.4796 | 1200 | 0.1932 | 0.9211 | 0.9214 | 0.9211 | 0.9212 |
| 0.2056 | 0.5596 | 1400 | 0.1962 | 0.9237 | 0.9243 | 0.9237 | 0.9224 |
| 0.1973 | 0.6395 | 1600 | 0.1906 | 0.9258 | 0.9255 | 0.9258 | 0.9256 |
| 0.1912 | 0.7194 | 1800 | 0.1870 | 0.9277 | 0.9275 | 0.9277 | 0.9270 |
| 0.183 | 0.7994 | 2000 | 0.1727 | 0.9318 | 0.9317 | 0.9318 | 0.9318 |
| 0.1672 | 0.8793 | 2200 | 0.1809 | 0.9320 | 0.9318 | 0.9320 | 0.9313 |
| 0.1643 | 0.9592 | 2400 | 0.1680 | 0.9337 | 0.9334 | 0.9337 | 0.9333 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
|