File size: 2,591 Bytes
de8cba6
 
d3b36b0
de8cba6
 
 
 
 
d3b36b0
 
de8cba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
base_model: dccuchile/tulio-chilean-spanish-bert
license: cc-by-4.0
metrics:
- accuracy
- precision
- recall
- f1
tags:
- generated_from_trainer
model-index:
- name: not-ner-v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# not-ner-v1

This model is a fine-tuned version of [dccuchile/tulio-chilean-spanish-bert](https://huggingface.co/dccuchile/tulio-chilean-spanish-bert) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1680
- Accuracy: 0.9337
- Precision: 0.9334
- Recall: 0.9337
- F1: 0.9333

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 20
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.3465        | 0.0799 | 200  | 0.3024          | 0.8719   | 0.8787    | 0.8719 | 0.8737 |
| 0.2925        | 0.1599 | 400  | 0.2530          | 0.9045   | 0.9039    | 0.9045 | 0.9041 |
| 0.2362        | 0.2398 | 600  | 0.2383          | 0.9089   | 0.9084    | 0.9089 | 0.9085 |
| 0.239         | 0.3197 | 800  | 0.2083          | 0.9169   | 0.9163    | 0.9169 | 0.9163 |
| 0.2149        | 0.3997 | 1000 | 0.2640          | 0.9130   | 0.9150    | 0.9130 | 0.9109 |
| 0.2171        | 0.4796 | 1200 | 0.1932          | 0.9211   | 0.9214    | 0.9211 | 0.9212 |
| 0.2056        | 0.5596 | 1400 | 0.1962          | 0.9237   | 0.9243    | 0.9237 | 0.9224 |
| 0.1973        | 0.6395 | 1600 | 0.1906          | 0.9258   | 0.9255    | 0.9258 | 0.9256 |
| 0.1912        | 0.7194 | 1800 | 0.1870          | 0.9277   | 0.9275    | 0.9277 | 0.9270 |
| 0.183         | 0.7994 | 2000 | 0.1727          | 0.9318   | 0.9317    | 0.9318 | 0.9318 |
| 0.1672        | 0.8793 | 2200 | 0.1809          | 0.9320   | 0.9318    | 0.9320 | 0.9313 |
| 0.1643        | 0.9592 | 2400 | 0.1680          | 0.9337   | 0.9334    | 0.9337 | 0.9333 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1