model update
Browse files
README.md
CHANGED
@@ -26,7 +26,7 @@ widget:
|
|
26 |
- text: "extract answers: <hl> Los estudiosos y los histori a dores están divididos en cuanto a qué evento señala el final de la era helenística. <hl> El período helenístico se puede ver que termina con la conquista final del corazón griego por Roma en 146 a. C. tras la guerra aquea, con la derrota final del reino ptolemaico en la batalla de Actium en 31 a. Helenístico se distingue de helénico en que el primero abarca toda la esfera de influencia griega antigua directa, mientras que el segundo se refiere a la propia Grecia."
|
27 |
example_title: "Answer Extraction Example 2"
|
28 |
model-index:
|
29 |
-
- name: lmqg/mt5-base-esquad-
|
30 |
results:
|
31 |
- task:
|
32 |
name: Text2text Generation
|
@@ -51,34 +51,49 @@ model-index:
|
|
51 |
- name: MoverScore (Question Generation)
|
52 |
type: moverscore_question_generation
|
53 |
value: 59.15
|
54 |
-
- name: QAAlignedF1Score-BERTScore
|
55 |
-
type:
|
56 |
value: 79.67
|
57 |
-
- name: QAAlignedRecall-BERTScore
|
58 |
-
type:
|
59 |
value: 82.44
|
60 |
-
- name: QAAlignedPrecision-BERTScore
|
61 |
-
type:
|
62 |
value: 77.14
|
63 |
-
- name: QAAlignedF1Score-MoverScore
|
64 |
-
type:
|
65 |
value: 54.82
|
66 |
-
- name: QAAlignedRecall-MoverScore
|
67 |
-
type:
|
68 |
value: 56.56
|
69 |
-
- name: QAAlignedPrecision-MoverScore
|
70 |
-
type:
|
71 |
value: 53.27
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
- name: AnswerF1Score (Answer Extraction)
|
73 |
-
type:
|
74 |
value: 75.33
|
75 |
- name: AnswerExactMatch (Answer Extraction)
|
76 |
type: answer_exact_match_answer_extraction
|
77 |
value: 57.98
|
78 |
---
|
79 |
|
80 |
-
# Model Card of `lmqg/mt5-base-esquad-
|
81 |
-
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation
|
82 |
|
83 |
|
84 |
### Overview
|
@@ -95,7 +110,7 @@ This model is fine-tuned version of [google/mt5-base](https://huggingface.co/goo
|
|
95 |
from lmqg import TransformersQG
|
96 |
|
97 |
# initialize model
|
98 |
-
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-
|
99 |
|
100 |
# model prediction
|
101 |
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
|
@@ -106,7 +121,7 @@ question_answer_pairs = model.generate_qa("a noviembre , que es también la esta
|
|
106 |
```python
|
107 |
from transformers import pipeline
|
108 |
|
109 |
-
pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-
|
110 |
|
111 |
# answer extraction
|
112 |
answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
|
@@ -119,7 +134,7 @@ question = pipe("extract answers: <hl> En la diáspora somalí, múltiples event
|
|
119 |
## Evaluation
|
120 |
|
121 |
|
122 |
-
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-esquad-
|
123 |
|
124 |
| | Score | Type | Dataset |
|
125 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -133,7 +148,7 @@ question = pipe("extract answers: <hl> En la diáspora somalí, múltiples event
|
|
133 |
| ROUGE_L | 24.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
|
134 |
|
135 |
|
136 |
-
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-esquad-
|
137 |
|
138 |
| | Score | Type | Dataset |
|
139 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -145,7 +160,7 @@ question = pipe("extract answers: <hl> En la diáspora somalí, múltiples event
|
|
145 |
| QAAlignedRecall (MoverScore) | 56.56 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
|
146 |
|
147 |
|
148 |
-
- ***Metric (Answer
|
149 |
|
150 |
| | Score | Type | Dataset |
|
151 |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
@@ -181,7 +196,7 @@ The following hyperparameters were used during fine-tuning:
|
|
181 |
- gradient_accumulation_steps: 2
|
182 |
- label_smoothing: 0.15
|
183 |
|
184 |
-
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-esquad-
|
185 |
|
186 |
## Citation
|
187 |
```
|
|
|
26 |
- text: "extract answers: <hl> Los estudiosos y los histori a dores están divididos en cuanto a qué evento señala el final de la era helenística. <hl> El período helenístico se puede ver que termina con la conquista final del corazón griego por Roma en 146 a. C. tras la guerra aquea, con la derrota final del reino ptolemaico en la batalla de Actium en 31 a. Helenístico se distingue de helénico en que el primero abarca toda la esfera de influencia griega antigua directa, mientras que el segundo se refiere a la propia Grecia."
|
27 |
example_title: "Answer Extraction Example 2"
|
28 |
model-index:
|
29 |
+
- name: lmqg/mt5-base-esquad-qg-ae
|
30 |
results:
|
31 |
- task:
|
32 |
name: Text2text Generation
|
|
|
51 |
- name: MoverScore (Question Generation)
|
52 |
type: moverscore_question_generation
|
53 |
value: 59.15
|
54 |
+
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
|
55 |
+
type: qa_aligned_f1_score_bertscore_question_answer_generation
|
56 |
value: 79.67
|
57 |
+
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
|
58 |
+
type: qa_aligned_recall_bertscore_question_answer_generation
|
59 |
value: 82.44
|
60 |
+
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
|
61 |
+
type: qa_aligned_precision_bertscore_question_answer_generation
|
62 |
value: 77.14
|
63 |
+
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
|
64 |
+
type: qa_aligned_f1_score_moverscore_question_answer_generation
|
65 |
value: 54.82
|
66 |
+
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
|
67 |
+
type: qa_aligned_recall_moverscore_question_answer_generation
|
68 |
value: 56.56
|
69 |
+
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
70 |
+
type: qa_aligned_precision_moverscore_question_answer_generation
|
71 |
value: 53.27
|
72 |
+
- name: BLEU4 (Answer Extraction)
|
73 |
+
type: bleu4_answer_extraction
|
74 |
+
value: 25.75
|
75 |
+
- name: ROUGE-L (Answer Extraction)
|
76 |
+
type: rouge_l_answer_extraction
|
77 |
+
value: 49.61
|
78 |
+
- name: METEOR (Answer Extraction)
|
79 |
+
type: meteor_answer_extraction
|
80 |
+
value: 43.74
|
81 |
+
- name: BERTScore (Answer Extraction)
|
82 |
+
type: bertscore_answer_extraction
|
83 |
+
value: 90.04
|
84 |
+
- name: MoverScore (Answer Extraction)
|
85 |
+
type: moverscore_answer_extraction
|
86 |
+
value: 80.94
|
87 |
- name: AnswerF1Score (Answer Extraction)
|
88 |
+
type: answer_f1_score__answer_extraction
|
89 |
value: 75.33
|
90 |
- name: AnswerExactMatch (Answer Extraction)
|
91 |
type: answer_exact_match_answer_extraction
|
92 |
value: 57.98
|
93 |
---
|
94 |
|
95 |
+
# Model Card of `lmqg/mt5-base-esquad-qg-ae`
|
96 |
+
This model is fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) for question generation and answer extraction jointly on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
|
97 |
|
98 |
|
99 |
### Overview
|
|
|
110 |
from lmqg import TransformersQG
|
111 |
|
112 |
# initialize model
|
113 |
+
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-qg-ae")
|
114 |
|
115 |
# model prediction
|
116 |
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
|
|
|
121 |
```python
|
122 |
from transformers import pipeline
|
123 |
|
124 |
+
pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-qg-ae")
|
125 |
|
126 |
# answer extraction
|
127 |
answer = pipe("generate question: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
|
|
|
134 |
## Evaluation
|
135 |
|
136 |
|
137 |
+
- ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-esquad-qg-ae/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json)
|
138 |
|
139 |
| | Score | Type | Dataset |
|
140 |
|:-----------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
148 |
| ROUGE_L | 24.82 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
|
149 |
|
150 |
|
151 |
+
- ***Metric (Question & Answer Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-esquad-qg-ae/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json)
|
152 |
|
153 |
| | Score | Type | Dataset |
|
154 |
|:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
160 |
| QAAlignedRecall (MoverScore) | 56.56 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
|
161 |
|
162 |
|
163 |
+
- ***Metric (Answer Extraction)***: [raw metric file](https://huggingface.co/lmqg/mt5-base-esquad-qg-ae/raw/main/eval/metric.first.answer.paragraph_sentence.answer.lmqg_qg_esquad.default.json)
|
164 |
|
165 |
| | Score | Type | Dataset |
|
166 |
|:-----------------|--------:|:--------|:-----------------------------------------------------------------|
|
|
|
196 |
- gradient_accumulation_steps: 2
|
197 |
- label_smoothing: 0.15
|
198 |
|
199 |
+
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-base-esquad-qg-ae/raw/main/trainer_config.json).
|
200 |
|
201 |
## Citation
|
202 |
```
|