mt5-base-esquad-qg / README.md
asahi417's picture
model update
e7daf78
|
raw
history blame
10.2 kB
metadata
license: cc-by-4.0
metrics:
  - bleu4
  - meteor
  - rouge-l
  - bertscore
  - moverscore
language: es
datasets:
  - lmqg/qg_esquad
pipeline_tag: text2text-generation
tags:
  - question generation
widget:
  - text: del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.
    example_title: Question Generation Example 1
  - text: a <hl> noviembre <hl> , que es también la estación lluviosa.
    example_title: Question Generation Example 2
  - text: >-
      como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de
      septiembre de 2013.
    example_title: Question Generation Example 3
model-index:
  - name: lmqg/mt5-base-esquad-qg
    results:
      - task:
          name: Text2text Generation
          type: text2text-generation
        dataset:
          name: lmqg/qg_esquad
          type: default
          args: default
        metrics:
          - name: BLEU4 (Question Generation)
            type: bleu4_question_generation
            value: 10.15
          - name: ROUGE-L (Question Generation)
            type: rouge_l_question_generation
            value: 25.45
          - name: METEOR (Question Generation)
            type: meteor_question_generation
            value: 23.43
          - name: BERTScore (Question Generation)
            type: bertscore_question_generation
            value: 84.47
          - name: MoverScore (Question Generation)
            type: moverscore_question_generation
            value: 59.62
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.68
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation (with Gold
              Answer)) [Gold Answer]
            type: >-
              qa_aligned_recall_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.66
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_with_gold_answer_gold_answer
            value: 89.7
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 64.22
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 64.21
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation (with
              Gold Answer)) [Gold Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_with_gold_answer_gold_answer
            value: 64.24
          - name: >-
              QAAlignedF1Score-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_bertscore_question_answer_generation_gold_answer
            value: 80.79
          - name: >-
              QAAlignedRecall-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: qa_aligned_recall_bertscore_question_answer_generation_gold_answer
            value: 83.34
          - name: >-
              QAAlignedPrecision-BERTScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_bertscore_question_answer_generation_gold_answer
            value: 78.45
          - name: >-
              QAAlignedF1Score-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_f1_score_moverscore_question_answer_generation_gold_answer
            value: 55.25
          - name: >-
              QAAlignedRecall-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_recall_moverscore_question_answer_generation_gold_answer
            value: 56.99
          - name: >-
              QAAlignedPrecision-MoverScore (Question & Answer Generation) [Gold
              Answer]
            type: >-
              qa_aligned_precision_moverscore_question_answer_generation_gold_answer
            value: 53.7

Model Card of lmqg/mt5-base-esquad-qg

This model is fine-tuned version of google/mt5-base for question generation task on the lmqg/qg_esquad (dataset_name: default) via lmqg.

Overview

Usage

from lmqg import TransformersQG

# initialize model
model = TransformersQG(language="es", model="lmqg/mt5-base-esquad-qg")

# model prediction
questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
  • With transformers
from transformers import pipeline

pipe = pipeline("text2text-generation", "lmqg/mt5-base-esquad-qg")
output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")

Evaluation

Score Type Dataset
BERTScore 84.47 default lmqg/qg_esquad
Bleu_1 26.73 default lmqg/qg_esquad
Bleu_2 18.46 default lmqg/qg_esquad
Bleu_3 13.5 default lmqg/qg_esquad
Bleu_4 10.15 default lmqg/qg_esquad
METEOR 23.43 default lmqg/qg_esquad
MoverScore 59.62 default lmqg/qg_esquad
ROUGE_L 25.45 default lmqg/qg_esquad
  • Metric (Question & Answer Generation, Reference Answer): Each question is generated from the gold answer. raw metric file
Score Type Dataset
QAAlignedF1Score (BERTScore) 89.68 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 64.22 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 89.7 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 64.24 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 89.66 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 64.21 default lmqg/qg_esquad
Score Type Dataset
QAAlignedF1Score (BERTScore) 80.79 default lmqg/qg_esquad
QAAlignedF1Score (MoverScore) 55.25 default lmqg/qg_esquad
QAAlignedPrecision (BERTScore) 78.45 default lmqg/qg_esquad
QAAlignedPrecision (MoverScore) 53.7 default lmqg/qg_esquad
QAAlignedRecall (BERTScore) 83.34 default lmqg/qg_esquad
QAAlignedRecall (MoverScore) 56.99 default lmqg/qg_esquad

Training hyperparameters

The following hyperparameters were used during fine-tuning:

  • dataset_path: lmqg/qg_esquad
  • dataset_name: default
  • input_types: ['paragraph_answer']
  • output_types: ['question']
  • prefix_types: None
  • model: google/mt5-base
  • max_length: 512
  • max_length_output: 32
  • epoch: 10
  • batch: 4
  • lr: 0.0005
  • fp16: False
  • random_seed: 1
  • gradient_accumulation_steps: 16
  • label_smoothing: 0.15

The full configuration can be found at fine-tuning config file.

Citation

@inproceedings{ushio-etal-2022-generative,
    title = "{G}enerative {L}anguage {M}odels for {P}aragraph-{L}evel {Q}uestion {G}eneration",
    author = "Ushio, Asahi  and
        Alva-Manchego, Fernando  and
        Camacho-Collados, Jose",
    booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, U.A.E.",
    publisher = "Association for Computational Linguistics",
}