model update
Browse files- README.md +34 -34
- config.json +1 -1
- eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_esquad.default.json +1 -1
- eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt +0 -0
- eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt +0 -0
- pytorch_model.bin +2 -2
- tokenizer_config.json +1 -1
- trainer_config.json +1 -1
README.md
CHANGED
@@ -7,14 +7,14 @@ metrics:
|
|
7 |
- rouge-l
|
8 |
- bertscore
|
9 |
- moverscore
|
10 |
-
language:
|
11 |
datasets:
|
12 |
- lmqg/qag_esquad
|
13 |
pipeline_tag: text2text-generation
|
14 |
tags:
|
15 |
- questions and answers generation
|
16 |
widget:
|
17 |
-
- text: "
|
18 |
example_title: "Questions & Answers Generation Example 1"
|
19 |
model-index:
|
20 |
- name: lmqg/mt5-small-esquad-qag
|
@@ -29,37 +29,37 @@ model-index:
|
|
29 |
metrics:
|
30 |
- name: BLEU4 (Question & Answer Generation)
|
31 |
type: bleu4_question_answer_generation
|
32 |
-
value: 1.
|
33 |
- name: ROUGE-L (Question & Answer Generation)
|
34 |
type: rouge_l_question_answer_generation
|
35 |
-
value:
|
36 |
- name: METEOR (Question & Answer Generation)
|
37 |
type: meteor_question_answer_generation
|
38 |
-
value:
|
39 |
- name: BERTScore (Question & Answer Generation)
|
40 |
type: bertscore_question_answer_generation
|
41 |
-
value:
|
42 |
- name: MoverScore (Question & Answer Generation)
|
43 |
type: moverscore_question_answer_generation
|
44 |
-
value:
|
45 |
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
|
46 |
type: qa_aligned_f1_score_bertscore_question_answer_generation
|
47 |
-
value:
|
48 |
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
|
49 |
type: qa_aligned_recall_bertscore_question_answer_generation
|
50 |
-
value:
|
51 |
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
|
52 |
type: qa_aligned_precision_bertscore_question_answer_generation
|
53 |
-
value:
|
54 |
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
|
55 |
type: qa_aligned_f1_score_moverscore_question_answer_generation
|
56 |
-
value:
|
57 |
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
|
58 |
type: qa_aligned_recall_moverscore_question_answer_generation
|
59 |
-
value:
|
60 |
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
61 |
type: qa_aligned_precision_moverscore_question_answer_generation
|
62 |
-
value:
|
63 |
---
|
64 |
|
65 |
# Model Card of `lmqg/mt5-small-esquad-qag`
|
@@ -68,7 +68,7 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
|
|
68 |
|
69 |
### Overview
|
70 |
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
|
71 |
-
- **Language:**
|
72 |
- **Training data:** [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) (default)
|
73 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
74 |
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
@@ -80,10 +80,10 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
|
|
80 |
from lmqg import TransformersQG
|
81 |
|
82 |
# initialize model
|
83 |
-
model = TransformersQG(language="
|
84 |
|
85 |
# model prediction
|
86 |
-
question_answer_pairs = model.generate_qa("
|
87 |
|
88 |
```
|
89 |
|
@@ -92,7 +92,7 @@ question_answer_pairs = model.generate_qa("William Turner was an English painter
|
|
92 |
from transformers import pipeline
|
93 |
|
94 |
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qag")
|
95 |
-
output = pipe("
|
96 |
|
97 |
```
|
98 |
|
@@ -103,20 +103,20 @@ output = pipe("generate question and answer: Beyonce further expanded her acting
|
|
103 |
|
104 |
| | Score | Type | Dataset |
|
105 |
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
|
106 |
-
| BERTScore |
|
107 |
-
| Bleu_1 | 7.
|
108 |
-
| Bleu_2 | 3.
|
109 |
-
| Bleu_3 | 2.
|
110 |
-
| Bleu_4 | 1.
|
111 |
-
| METEOR |
|
112 |
-
| MoverScore |
|
113 |
-
| QAAlignedF1Score (BERTScore) |
|
114 |
-
| QAAlignedF1Score (MoverScore) |
|
115 |
-
| QAAlignedPrecision (BERTScore) |
|
116 |
-
| QAAlignedPrecision (MoverScore) |
|
117 |
-
| QAAlignedRecall (BERTScore) |
|
118 |
-
| QAAlignedRecall (MoverScore) |
|
119 |
-
| ROUGE_L |
|
120 |
|
121 |
|
122 |
|
@@ -127,16 +127,16 @@ The following hyperparameters were used during fine-tuning:
|
|
127 |
- dataset_name: default
|
128 |
- input_types: ['paragraph']
|
129 |
- output_types: ['questions_answers']
|
130 |
-
- prefix_types:
|
131 |
- model: google/mt5-small
|
132 |
- max_length: 512
|
133 |
- max_length_output: 256
|
134 |
-
- epoch:
|
135 |
- batch: 8
|
136 |
- lr: 0.001
|
137 |
- fp16: False
|
138 |
- random_seed: 1
|
139 |
-
- gradient_accumulation_steps:
|
140 |
- label_smoothing: 0.0
|
141 |
|
142 |
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qag/raw/main/trainer_config.json).
|
|
|
7 |
- rouge-l
|
8 |
- bertscore
|
9 |
- moverscore
|
10 |
+
language: es
|
11 |
datasets:
|
12 |
- lmqg/qag_esquad
|
13 |
pipeline_tag: text2text-generation
|
14 |
tags:
|
15 |
- questions and answers generation
|
16 |
widget:
|
17 |
+
- text: "del Ministerio de Desarrollo Urbano , Gobierno de la India."
|
18 |
example_title: "Questions & Answers Generation Example 1"
|
19 |
model-index:
|
20 |
- name: lmqg/mt5-small-esquad-qag
|
|
|
29 |
metrics:
|
30 |
- name: BLEU4 (Question & Answer Generation)
|
31 |
type: bleu4_question_answer_generation
|
32 |
+
value: 1.36
|
33 |
- name: ROUGE-L (Question & Answer Generation)
|
34 |
type: rouge_l_question_answer_generation
|
35 |
+
value: 12.76
|
36 |
- name: METEOR (Question & Answer Generation)
|
37 |
type: meteor_question_answer_generation
|
38 |
+
value: 16.9
|
39 |
- name: BERTScore (Question & Answer Generation)
|
40 |
type: bertscore_question_answer_generation
|
41 |
+
value: 64.09
|
42 |
- name: MoverScore (Question & Answer Generation)
|
43 |
type: moverscore_question_answer_generation
|
44 |
+
value: 50.15
|
45 |
- name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
|
46 |
type: qa_aligned_f1_score_bertscore_question_answer_generation
|
47 |
+
value: 78.12
|
48 |
- name: QAAlignedRecall-BERTScore (Question & Answer Generation)
|
49 |
type: qa_aligned_recall_bertscore_question_answer_generation
|
50 |
+
value: 78.27
|
51 |
- name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
|
52 |
type: qa_aligned_precision_bertscore_question_answer_generation
|
53 |
+
value: 78.0
|
54 |
- name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
|
55 |
type: qa_aligned_f1_score_moverscore_question_answer_generation
|
56 |
+
value: 53.92
|
57 |
- name: QAAlignedRecall-MoverScore (Question & Answer Generation)
|
58 |
type: qa_aligned_recall_moverscore_question_answer_generation
|
59 |
+
value: 53.93
|
60 |
- name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
|
61 |
type: qa_aligned_precision_moverscore_question_answer_generation
|
62 |
+
value: 53.93
|
63 |
---
|
64 |
|
65 |
# Model Card of `lmqg/mt5-small-esquad-qag`
|
|
|
68 |
|
69 |
### Overview
|
70 |
- **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
|
71 |
+
- **Language:** es
|
72 |
- **Training data:** [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) (default)
|
73 |
- **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
|
74 |
- **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
|
|
|
80 |
from lmqg import TransformersQG
|
81 |
|
82 |
# initialize model
|
83 |
+
model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qag")
|
84 |
|
85 |
# model prediction
|
86 |
+
question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
|
87 |
|
88 |
```
|
89 |
|
|
|
92 |
from transformers import pipeline
|
93 |
|
94 |
pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qag")
|
95 |
+
output = pipe("del Ministerio de Desarrollo Urbano , Gobierno de la India.")
|
96 |
|
97 |
```
|
98 |
|
|
|
103 |
|
104 |
| | Score | Type | Dataset |
|
105 |
|:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
|
106 |
+
| BERTScore | 64.09 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
107 |
+
| Bleu_1 | 7.43 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
108 |
+
| Bleu_2 | 3.51 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
109 |
+
| Bleu_3 | 2.04 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
110 |
+
| Bleu_4 | 1.36 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
111 |
+
| METEOR | 16.9 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
112 |
+
| MoverScore | 50.15 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
113 |
+
| QAAlignedF1Score (BERTScore) | 78.12 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
114 |
+
| QAAlignedF1Score (MoverScore) | 53.92 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
115 |
+
| QAAlignedPrecision (BERTScore) | 78 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
116 |
+
| QAAlignedPrecision (MoverScore) | 53.93 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
117 |
+
| QAAlignedRecall (BERTScore) | 78.27 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
118 |
+
| QAAlignedRecall (MoverScore) | 53.93 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
119 |
+
| ROUGE_L | 12.76 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
|
120 |
|
121 |
|
122 |
|
|
|
127 |
- dataset_name: default
|
128 |
- input_types: ['paragraph']
|
129 |
- output_types: ['questions_answers']
|
130 |
+
- prefix_types: None
|
131 |
- model: google/mt5-small
|
132 |
- max_length: 512
|
133 |
- max_length_output: 256
|
134 |
+
- epoch: 14
|
135 |
- batch: 8
|
136 |
- lr: 0.001
|
137 |
- fp16: False
|
138 |
- random_seed: 1
|
139 |
+
- gradient_accumulation_steps: 8
|
140 |
- label_smoothing: 0.0
|
141 |
|
142 |
The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qag/raw/main/trainer_config.json).
|
config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"_name_or_path": "lmqg_output/mt5-small-esquad-qag/
|
3 |
"add_prefix": false,
|
4 |
"architectures": [
|
5 |
"MT5ForConditionalGeneration"
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "lmqg_output/mt5-small-esquad-qag/model_mzgdpa/epoch_5",
|
3 |
"add_prefix": false,
|
4 |
"architectures": [
|
5 |
"MT5ForConditionalGeneration"
|
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_esquad.default.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"validation": {"Bleu_1": 0.
|
|
|
1 |
+
{"validation": {"Bleu_1": 0.2718803847471669, "Bleu_2": 0.15254535887603982, "Bleu_3": 0.0894467983934925, "Bleu_4": 0.060018622693704934, "METEOR": 0.20863168631638873, "ROUGE_L": 0.2493543685540034, "BERTScore": 0.7305193155297462, "MoverScore": 0.521490296598535, "QAAlignedF1Score (BERTScore)": 0.8023877345182617, "QAAlignedRecall (BERTScore)": 0.7787815647509312, "QAAlignedPrecision (BERTScore)": 0.8284482213316031, "QAAlignedF1Score (MoverScore)": 0.5564934635971232, "QAAlignedRecall (MoverScore)": 0.5375780961020423, "QAAlignedPrecision (MoverScore)": 0.5781583103105322}, "test": {"Bleu_1": 0.07432354130344639, "Bleu_2": 0.03507385086417368, "Bleu_3": 0.0204298541841383, "Bleu_4": 0.013646333757009334, "METEOR": 0.1689782326396343, "ROUGE_L": 0.12757471978428708, "BERTScore": 0.6408908916549078, "MoverScore": 0.5014847577134893, "QAAlignedF1Score (BERTScore)": 0.7811615456479336, "QAAlignedRecall (BERTScore)": 0.7826666697304786, "QAAlignedPrecision (BERTScore)": 0.7800460044662871, "QAAlignedF1Score (MoverScore)": 0.5391780380897195, "QAAlignedRecall (MoverScore)": 0.5393083014332328, "QAAlignedPrecision (MoverScore)": 0.5392940215876131}}
|
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8597366c1661de134170374ac795bf81c1ff381830277756abe8793299cb1014
|
3 |
+
size 1200727429
|
tokenizer_config.json
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"additional_special_tokens": null,
|
3 |
"eos_token": "</s>",
|
4 |
"extra_ids": 0,
|
5 |
-
"name_or_path": "lmqg_output/mt5-small-esquad-qag/
|
6 |
"pad_token": "<pad>",
|
7 |
"sp_model_kwargs": {},
|
8 |
"special_tokens_map_file": "/home/c.c2042013/.cache/huggingface/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
|
|
|
2 |
"additional_special_tokens": null,
|
3 |
"eos_token": "</s>",
|
4 |
"extra_ids": 0,
|
5 |
+
"name_or_path": "lmqg_output/mt5-small-esquad-qag/model_mzgdpa/epoch_5",
|
6 |
"pad_token": "<pad>",
|
7 |
"sp_model_kwargs": {},
|
8 |
"special_tokens_map_file": "/home/c.c2042013/.cache/huggingface/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"dataset_path": "lmqg/qag_esquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types":
|
|
|
1 |
+
{"dataset_path": "lmqg/qag_esquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": null, "model": "google/mt5-small", "max_length": 512, "max_length_output": 256, "epoch": 14, "batch": 8, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 8, "label_smoothing": 0.0}
|