asahi417 commited on
Commit
d347d6c
1 Parent(s): 5639e66

model update

Browse files
README.md CHANGED
@@ -7,14 +7,14 @@ metrics:
7
  - rouge-l
8
  - bertscore
9
  - moverscore
10
- language: en
11
  datasets:
12
  - lmqg/qag_esquad
13
  pipeline_tag: text2text-generation
14
  tags:
15
  - questions and answers generation
16
  widget:
17
- - text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
18
  example_title: "Questions & Answers Generation Example 1"
19
  model-index:
20
  - name: lmqg/mt5-small-esquad-qag
@@ -29,37 +29,37 @@ model-index:
29
  metrics:
30
  - name: BLEU4 (Question & Answer Generation)
31
  type: bleu4_question_answer_generation
32
- value: 1.48
33
  - name: ROUGE-L (Question & Answer Generation)
34
  type: rouge_l_question_answer_generation
35
- value: 13.35
36
  - name: METEOR (Question & Answer Generation)
37
  type: meteor_question_answer_generation
38
- value: 17.68
39
  - name: BERTScore (Question & Answer Generation)
40
  type: bertscore_question_answer_generation
41
- value: 81.17
42
  - name: MoverScore (Question & Answer Generation)
43
  type: moverscore_question_answer_generation
44
- value: 54.06
45
  - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
46
  type: qa_aligned_f1_score_bertscore_question_answer_generation
47
- value: 86.93
48
  - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
49
  type: qa_aligned_recall_bertscore_question_answer_generation
50
- value: 87.22
51
  - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
52
  type: qa_aligned_precision_bertscore_question_answer_generation
53
- value: 86.67
54
  - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
55
  type: qa_aligned_f1_score_moverscore_question_answer_generation
56
- value: 63.76
57
  - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
58
  type: qa_aligned_recall_moverscore_question_answer_generation
59
- value: 64.15
60
  - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
61
  type: qa_aligned_precision_moverscore_question_answer_generation
62
- value: 63.41
63
  ---
64
 
65
  # Model Card of `lmqg/mt5-small-esquad-qag`
@@ -68,7 +68,7 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
68
 
69
  ### Overview
70
  - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
71
- - **Language:** en
72
  - **Training data:** [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) (default)
73
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
74
  - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
@@ -80,10 +80,10 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
80
  from lmqg import TransformersQG
81
 
82
  # initialize model
83
- model = TransformersQG(language="en", model="lmqg/mt5-small-esquad-qag")
84
 
85
  # model prediction
86
- question_answer_pairs = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
87
 
88
  ```
89
 
@@ -92,7 +92,7 @@ question_answer_pairs = model.generate_qa("William Turner was an English painter
92
  from transformers import pipeline
93
 
94
  pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qag")
95
- output = pipe("generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.")
96
 
97
  ```
98
 
@@ -103,20 +103,20 @@ output = pipe("generate question and answer: Beyonce further expanded her acting
103
 
104
  | | Score | Type | Dataset |
105
  |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
106
- | BERTScore | 81.17 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
107
- | Bleu_1 | 7.99 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
108
- | Bleu_2 | 3.81 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
109
- | Bleu_3 | 2.22 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
110
- | Bleu_4 | 1.48 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
111
- | METEOR | 17.68 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
112
- | MoverScore | 54.06 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
113
- | QAAlignedF1Score (BERTScore) | 86.93 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
114
- | QAAlignedF1Score (MoverScore) | 63.76 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
115
- | QAAlignedPrecision (BERTScore) | 86.67 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
116
- | QAAlignedPrecision (MoverScore) | 63.41 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
117
- | QAAlignedRecall (BERTScore) | 87.22 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
118
- | QAAlignedRecall (MoverScore) | 64.15 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
119
- | ROUGE_L | 13.35 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
120
 
121
 
122
 
@@ -127,16 +127,16 @@ The following hyperparameters were used during fine-tuning:
127
  - dataset_name: default
128
  - input_types: ['paragraph']
129
  - output_types: ['questions_answers']
130
- - prefix_types: ['qag']
131
  - model: google/mt5-small
132
  - max_length: 512
133
  - max_length_output: 256
134
- - epoch: 15
135
  - batch: 8
136
  - lr: 0.001
137
  - fp16: False
138
  - random_seed: 1
139
- - gradient_accumulation_steps: 16
140
  - label_smoothing: 0.0
141
 
142
  The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qag/raw/main/trainer_config.json).
 
7
  - rouge-l
8
  - bertscore
9
  - moverscore
10
+ language: es
11
  datasets:
12
  - lmqg/qag_esquad
13
  pipeline_tag: text2text-generation
14
  tags:
15
  - questions and answers generation
16
  widget:
17
+ - text: "del Ministerio de Desarrollo Urbano , Gobierno de la India."
18
  example_title: "Questions & Answers Generation Example 1"
19
  model-index:
20
  - name: lmqg/mt5-small-esquad-qag
 
29
  metrics:
30
  - name: BLEU4 (Question & Answer Generation)
31
  type: bleu4_question_answer_generation
32
+ value: 1.36
33
  - name: ROUGE-L (Question & Answer Generation)
34
  type: rouge_l_question_answer_generation
35
+ value: 12.76
36
  - name: METEOR (Question & Answer Generation)
37
  type: meteor_question_answer_generation
38
+ value: 16.9
39
  - name: BERTScore (Question & Answer Generation)
40
  type: bertscore_question_answer_generation
41
+ value: 64.09
42
  - name: MoverScore (Question & Answer Generation)
43
  type: moverscore_question_answer_generation
44
+ value: 50.15
45
  - name: QAAlignedF1Score-BERTScore (Question & Answer Generation)
46
  type: qa_aligned_f1_score_bertscore_question_answer_generation
47
+ value: 78.12
48
  - name: QAAlignedRecall-BERTScore (Question & Answer Generation)
49
  type: qa_aligned_recall_bertscore_question_answer_generation
50
+ value: 78.27
51
  - name: QAAlignedPrecision-BERTScore (Question & Answer Generation)
52
  type: qa_aligned_precision_bertscore_question_answer_generation
53
+ value: 78.0
54
  - name: QAAlignedF1Score-MoverScore (Question & Answer Generation)
55
  type: qa_aligned_f1_score_moverscore_question_answer_generation
56
+ value: 53.92
57
  - name: QAAlignedRecall-MoverScore (Question & Answer Generation)
58
  type: qa_aligned_recall_moverscore_question_answer_generation
59
+ value: 53.93
60
  - name: QAAlignedPrecision-MoverScore (Question & Answer Generation)
61
  type: qa_aligned_precision_moverscore_question_answer_generation
62
+ value: 53.93
63
  ---
64
 
65
  # Model Card of `lmqg/mt5-small-esquad-qag`
 
68
 
69
  ### Overview
70
  - **Language model:** [google/mt5-small](https://huggingface.co/google/mt5-small)
71
+ - **Language:** es
72
  - **Training data:** [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) (default)
73
  - **Online Demo:** [https://autoqg.net/](https://autoqg.net/)
74
  - **Repository:** [https://github.com/asahi417/lm-question-generation](https://github.com/asahi417/lm-question-generation)
 
80
  from lmqg import TransformersQG
81
 
82
  # initialize model
83
+ model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qag")
84
 
85
  # model prediction
86
+ question_answer_pairs = model.generate_qa("a noviembre , que es también la estación lluviosa.")
87
 
88
  ```
89
 
 
92
  from transformers import pipeline
93
 
94
  pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qag")
95
+ output = pipe("del Ministerio de Desarrollo Urbano , Gobierno de la India.")
96
 
97
  ```
98
 
 
103
 
104
  | | Score | Type | Dataset |
105
  |:--------------------------------|--------:|:--------|:-------------------------------------------------------------------|
106
+ | BERTScore | 64.09 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
107
+ | Bleu_1 | 7.43 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
108
+ | Bleu_2 | 3.51 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
109
+ | Bleu_3 | 2.04 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
110
+ | Bleu_4 | 1.36 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
111
+ | METEOR | 16.9 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
112
+ | MoverScore | 50.15 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
113
+ | QAAlignedF1Score (BERTScore) | 78.12 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
114
+ | QAAlignedF1Score (MoverScore) | 53.92 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
115
+ | QAAlignedPrecision (BERTScore) | 78 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
116
+ | QAAlignedPrecision (MoverScore) | 53.93 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
117
+ | QAAlignedRecall (BERTScore) | 78.27 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
118
+ | QAAlignedRecall (MoverScore) | 53.93 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
119
+ | ROUGE_L | 12.76 | default | [lmqg/qag_esquad](https://huggingface.co/datasets/lmqg/qag_esquad) |
120
 
121
 
122
 
 
127
  - dataset_name: default
128
  - input_types: ['paragraph']
129
  - output_types: ['questions_answers']
130
+ - prefix_types: None
131
  - model: google/mt5-small
132
  - max_length: 512
133
  - max_length_output: 256
134
+ - epoch: 14
135
  - batch: 8
136
  - lr: 0.001
137
  - fp16: False
138
  - random_seed: 1
139
+ - gradient_accumulation_steps: 8
140
  - label_smoothing: 0.0
141
 
142
  The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qag/raw/main/trainer_config.json).
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lmqg_output/mt5-small-esquad-qag/best_model",
3
  "add_prefix": false,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
 
1
  {
2
+ "_name_or_path": "lmqg_output/mt5-small-esquad-qag/model_mzgdpa/epoch_5",
3
  "add_prefix": false,
4
  "architectures": [
5
  "MT5ForConditionalGeneration"
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_esquad.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.2850437982146202, "Bleu_2": 0.1610693347933042, "Bleu_3": 0.09479214712562453, "Bleu_4": 0.06316072756946382, "METEOR": 0.20937507317506926, "ROUGE_L": 0.247577012309755, "BERTScore": 0.8606134602627895, "MoverScore": 0.5926754397407197, "QAAlignedF1Score (BERTScore)": 0.8818379455108741, "QAAlignedRecall (BERTScore)": 0.8702034684856624, "QAAlignedPrecision (BERTScore)": 0.8941234975356361, "QAAlignedF1Score (MoverScore)": 0.6550485268023295, "QAAlignedRecall (MoverScore)": 0.6401481289661134, "QAAlignedPrecision (MoverScore)": 0.671663012891372}, "test": {"Bleu_1": 0.07985266597997066, "Bleu_2": 0.03813330462794156, "Bleu_3": 0.022234146301146923, "Bleu_4": 0.014768244684738977, "METEOR": 0.1768493505457922, "ROUGE_L": 0.13354751168160714, "BERTScore": 0.8116741879330348, "MoverScore": 0.540645316283108, "QAAlignedF1Score (BERTScore)": 0.8693435521882494, "QAAlignedRecall (BERTScore)": 0.872202193455801, "QAAlignedPrecision (BERTScore)": 0.8666602810589459, "QAAlignedF1Score (MoverScore)": 0.6376073535235884, "QAAlignedRecall (MoverScore)": 0.641493720145074, "QAAlignedPrecision (MoverScore)": 0.6341303484358323}}
 
1
+ {"validation": {"Bleu_1": 0.2718803847471669, "Bleu_2": 0.15254535887603982, "Bleu_3": 0.0894467983934925, "Bleu_4": 0.060018622693704934, "METEOR": 0.20863168631638873, "ROUGE_L": 0.2493543685540034, "BERTScore": 0.7305193155297462, "MoverScore": 0.521490296598535, "QAAlignedF1Score (BERTScore)": 0.8023877345182617, "QAAlignedRecall (BERTScore)": 0.7787815647509312, "QAAlignedPrecision (BERTScore)": 0.8284482213316031, "QAAlignedF1Score (MoverScore)": 0.5564934635971232, "QAAlignedRecall (MoverScore)": 0.5375780961020423, "QAAlignedPrecision (MoverScore)": 0.5781583103105322}, "test": {"Bleu_1": 0.07432354130344639, "Bleu_2": 0.03507385086417368, "Bleu_3": 0.0204298541841383, "Bleu_4": 0.013646333757009334, "METEOR": 0.1689782326396343, "ROUGE_L": 0.12757471978428708, "BERTScore": 0.6408908916549078, "MoverScore": 0.5014847577134893, "QAAlignedF1Score (BERTScore)": 0.7811615456479336, "QAAlignedRecall (BERTScore)": 0.7826666697304786, "QAAlignedPrecision (BERTScore)": 0.7800460044662871, "QAAlignedF1Score (MoverScore)": 0.5391780380897195, "QAAlignedRecall (MoverScore)": 0.5393083014332328, "QAAlignedPrecision (MoverScore)": 0.5392940215876131}}
eval/samples.test.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
eval/samples.validation.hyp.paragraph.questions_answers.lmqg_qag_esquad.default.txt CHANGED
The diff for this file is too large to render. See raw diff
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f37ea83e20747f94e7d54865e0331671c9318f43d4e901d01d0d93a340133c58
3
- size 1200724741
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8597366c1661de134170374ac795bf81c1ff381830277756abe8793299cb1014
3
+ size 1200727429
tokenizer_config.json CHANGED
@@ -2,7 +2,7 @@
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
- "name_or_path": "lmqg_output/mt5-small-esquad-qag/best_model",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/c.c2042013/.cache/huggingface/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
 
2
  "additional_special_tokens": null,
3
  "eos_token": "</s>",
4
  "extra_ids": 0,
5
+ "name_or_path": "lmqg_output/mt5-small-esquad-qag/model_mzgdpa/epoch_5",
6
  "pad_token": "<pad>",
7
  "sp_model_kwargs": {},
8
  "special_tokens_map_file": "/home/c.c2042013/.cache/huggingface/transformers/685ac0ca8568ec593a48b61b0a3c272beee9bc194a3c7241d15dcadb5f875e53.f76030f3ec1b96a8199b2593390c610e76ca8028ef3d24680000619ffb646276",
trainer_config.json CHANGED
@@ -1 +1 @@
1
- {"dataset_path": "lmqg/qag_esquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": ["qag"], "model": "google/mt5-small", "max_length": 512, "max_length_output": 256, "epoch": 15, "batch": 8, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 16, "label_smoothing": 0.0}
 
1
+ {"dataset_path": "lmqg/qag_esquad", "dataset_name": "default", "input_types": ["paragraph"], "output_types": ["questions_answers"], "prefix_types": null, "model": "google/mt5-small", "max_length": 512, "max_length_output": 256, "epoch": 14, "batch": 8, "lr": 0.001, "fp16": false, "random_seed": 1, "gradient_accumulation_steps": 8, "label_smoothing": 0.0}