asahi417 commited on
Commit
b1e741c
1 Parent(s): f3eb742

model update

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -21,7 +21,7 @@ widget:
21
  - text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
22
  example_title: "Question Generation Example 3"
23
  model-index:
24
- - name: lmqg/mt5-small-esquad
25
  results:
26
  - task:
27
  name: Text2text Generation
@@ -66,7 +66,7 @@ model-index:
66
  value: 63.75
67
  ---
68
 
69
- # Model Card of `lmqg/mt5-small-esquad`
70
  This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
71
 
72
 
@@ -84,7 +84,7 @@ This model is fine-tuned version of [google/mt5-small](https://huggingface.co/go
84
  from lmqg import TransformersQG
85
 
86
  # initialize model
87
- model = TransformersQG(language="es", model="lmqg/mt5-small-esquad")
88
 
89
  # model prediction
90
  questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
@@ -95,7 +95,7 @@ questions = model.generate_q(list_context="a noviembre , que es también la esta
95
  ```python
96
  from transformers import pipeline
97
 
98
- pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad")
99
  output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
100
 
101
  ```
@@ -103,7 +103,7 @@ output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la In
103
  ## Evaluation
104
 
105
 
106
- - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json)
107
 
108
  | | Score | Type | Dataset |
109
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
@@ -117,7 +117,7 @@ output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la In
117
  | ROUGE_L | 24.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
118
 
119
 
120
- - ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json)
121
 
122
  | | Score | Type | Dataset |
123
  |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
@@ -149,7 +149,7 @@ The following hyperparameters were used during fine-tuning:
149
  - gradient_accumulation_steps: 1
150
  - label_smoothing: 0.15
151
 
152
- The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad/raw/main/trainer_config.json).
153
 
154
  ## Citation
155
  ```
 
21
  - text: "como <hl> el gobierno de Abbott <hl> que asumió el cargo el 18 de septiembre de 2013."
22
  example_title: "Question Generation Example 3"
23
  model-index:
24
+ - name: lmqg/mt5-small-esquad-qg
25
  results:
26
  - task:
27
  name: Text2text Generation
 
66
  value: 63.75
67
  ---
68
 
69
+ # Model Card of `lmqg/mt5-small-esquad-qg`
70
  This model is fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) for question generation task on the [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) (dataset_name: default) via [`lmqg`](https://github.com/asahi417/lm-question-generation).
71
 
72
 
 
84
  from lmqg import TransformersQG
85
 
86
  # initialize model
87
+ model = TransformersQG(language="es", model="lmqg/mt5-small-esquad-qg")
88
 
89
  # model prediction
90
  questions = model.generate_q(list_context="a noviembre , que es también la estación lluviosa.", list_answer="noviembre")
 
95
  ```python
96
  from transformers import pipeline
97
 
98
+ pipe = pipeline("text2text-generation", "lmqg/mt5-small-esquad-qg")
99
  output = pipe("del <hl> Ministerio de Desarrollo Urbano <hl> , Gobierno de la India.")
100
 
101
  ```
 
103
  ## Evaluation
104
 
105
 
106
+ - ***Metric (Question Generation)***: [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.sentence.paragraph_answer.question.lmqg_qg_esquad.default.json)
107
 
108
  | | Score | Type | Dataset |
109
  |:-----------|--------:|:--------|:-----------------------------------------------------------------|
 
117
  | ROUGE_L | 24.62 | default | [lmqg/qg_esquad](https://huggingface.co/datasets/lmqg/qg_esquad) |
118
 
119
 
120
+ - ***Metric (Question & Answer Generation)***: QAG metrics are computed with *the gold answer* and generated question on it for this model, as the model cannot provide an answer. [raw metric file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/eval/metric.first.answer.paragraph.questions_answers.lmqg_qg_esquad.default.json)
121
 
122
  | | Score | Type | Dataset |
123
  |:--------------------------------|--------:|:--------|:-----------------------------------------------------------------|
 
149
  - gradient_accumulation_steps: 1
150
  - label_smoothing: 0.15
151
 
152
+ The full configuration can be found at [fine-tuning config file](https://huggingface.co/lmqg/mt5-small-esquad-qg/raw/main/trainer_config.json).
153
 
154
  ## Citation
155
  ```