asahi417 commited on
Commit
3334d87
1 Parent(s): 719a37a

model update

Browse files
README.md CHANGED
@@ -14,7 +14,7 @@ pipeline_tag: text2text-generation
14
  tags:
15
  - questions and answers generation
16
  widget:
17
- - text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
18
  example_title: "Questions & Answers Generation Example 1"
19
  model-index:
20
  - name: lmqg/t5-large-tweetqa-qag
@@ -38,16 +38,16 @@ model-index:
38
  value: 0.31606923044567353
39
  - name: BERTScore
40
  type: bertscore
41
- value: 0.9109018614729723
42
  - name: MoverScore
43
  type: moverscore
44
  value: 0.6276807689001792
45
  - name: QAAlignedF1Score (BERTScore)
46
  type: qa_aligned_f1_score_bertscore
47
- value: 0.9249592790830291
48
  - name: QAAlignedF1Score (MoverScore)
49
  type: qa_aligned_f1_score_moverscore
50
- value: 0.65046712149093
51
  ---
52
 
53
  # Model Card of `lmqg/t5-large-tweetqa-qag`
@@ -89,7 +89,7 @@ from lmqg import TransformersQG
89
  # initialize model
90
  model = TransformersQG(language='en', model='lmqg/t5-large-tweetqa-qag')
91
  # model prediction
92
- question = model.generate_qa(list_context=["William Turner was an English painter who specialised in watercolour landscapes"], list_answer=["William Turner"])
93
 
94
  ```
95
 
@@ -100,7 +100,7 @@ from transformers import pipeline
100
  # initialize model
101
  pipe = pipeline("text2text-generation", 'lmqg/t5-large-tweetqa-qag')
102
  # question generation
103
- question = pipe('generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
104
 
105
  ```
106
 
 
14
  tags:
15
  - questions and answers generation
16
  widget:
17
+ - text: "generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records."
18
  example_title: "Questions & Answers Generation Example 1"
19
  model-index:
20
  - name: lmqg/t5-large-tweetqa-qag
 
38
  value: 0.31606923044567353
39
  - name: BERTScore
40
  type: bertscore
41
+ value: 0.910901861064021
42
  - name: MoverScore
43
  type: moverscore
44
  value: 0.6276807689001792
45
  - name: QAAlignedF1Score (BERTScore)
46
  type: qa_aligned_f1_score_bertscore
47
+ value: 0.9249568276981791
48
  - name: QAAlignedF1Score (MoverScore)
49
  type: qa_aligned_f1_score_moverscore
50
+ value: 0.6504891051908223
51
  ---
52
 
53
  # Model Card of `lmqg/t5-large-tweetqa-qag`
 
89
  # initialize model
90
  model = TransformersQG(language='en', model='lmqg/t5-large-tweetqa-qag')
91
  # model prediction
92
+ question = model.generate_qa("William Turner was an English painter who specialised in watercolour landscapes")
93
 
94
  ```
95
 
 
100
  # initialize model
101
  pipe = pipeline("text2text-generation", 'lmqg/t5-large-tweetqa-qag')
102
  # question generation
103
+ question = pipe('generate question and answer: Beyonce further expanded her acting career, starring as blues singer Etta James in the 2008 musical biopic, Cadillac Records.')
104
 
105
  ```
106
 
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "lmqg_output/t5_large_tweetqa/best_model",
3
  "add_prefix": true,
4
  "architectures": [
5
  "T5ForConditionalGeneration"
 
1
  {
2
+ "_name_or_path": "lmqg_output/t5_large_tweetqa/model_mzgdpa/epoch_15",
3
  "add_prefix": true,
4
  "architectures": [
5
  "T5ForConditionalGeneration"
eval/metric.first.answer.paragraph.questions_answers.lmqg_qag_tweetqa.default.json CHANGED
@@ -1 +1 @@
1
- {"validation": {"Bleu_1": 0.394207422823425, "Bleu_2": 0.27038964481113453, "Bleu_3": 0.18739277300825702, "Bleu_4": 0.13114698367378638, "METEOR": 0.34585457496727634, "ROUGE_L": 0.382560092903778, "BERTScore": 0.9066984992902438, "MoverScore": 0.6275517569967117, "QAAlignedF1Score (BERTScore)": 0.9198975058373102, "QAAlignedF1Score (MoverScore)": 0.6506817678090372}, "test": {"Bleu_1": 0.4133416813705724, "Bleu_2": 0.2836783148838816, "Bleu_3": 0.19681581918083613, "Bleu_4": 0.13755949895011021, "METEOR": 0.31606923044567353, "ROUGE_L": 0.3723510278895709, "BERTScore": 0.9109018614729723, "MoverScore": 0.6276807689001792, "QAAlignedF1Score (BERTScore)": 0.9249592790830291, "QAAlignedF1Score (MoverScore)": 0.65046712149093}}
 
1
+ {"validation": {"Bleu_1": 0.394207422823425, "Bleu_2": 0.27038964481113453, "Bleu_3": 0.18739277300825702, "Bleu_4": 0.13114698367378638, "METEOR": 0.34585457496727634, "ROUGE_L": 0.382560092903778, "BERTScore": 0.9066984990857682, "MoverScore": 0.6275517569967117, "QAAlignedF1Score (BERTScore)": 0.9183287210718071, "QAAlignedF1Score (MoverScore)": 0.6495212645715458}, "test": {"Bleu_1": 0.4133416813705724, "Bleu_2": 0.2836783148838816, "Bleu_3": 0.19681581918083613, "Bleu_4": 0.13755949895011021, "METEOR": 0.31606923044567353, "ROUGE_L": 0.3723510278895709, "BERTScore": 0.910901861064021, "MoverScore": 0.6276807689001792, "QAAlignedF1Score (BERTScore)": 0.9249568276981791, "QAAlignedF1Score (MoverScore)": 0.6504891051908223}}
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2e44f0123ea97366277358f859e565b30b7863d5c7ec6b23ed706cfb5f768b6b
3
- size 2950727111
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:afba7fd4c15282caf436b4f53864293edad36eb3ae5441b4d7366b001be69d6d
3
+ size 2950734215
tokenizer_config.json CHANGED
@@ -104,7 +104,7 @@
104
  "eos_token": "</s>",
105
  "extra_ids": 100,
106
  "model_max_length": 512,
107
- "name_or_path": "lmqg_output/t5_large_tweetqa/best_model",
108
  "pad_token": "<pad>",
109
  "special_tokens_map_file": null,
110
  "tokenizer_class": "T5Tokenizer",
 
104
  "eos_token": "</s>",
105
  "extra_ids": 100,
106
  "model_max_length": 512,
107
+ "name_or_path": "lmqg_output/t5_large_tweetqa/model_mzgdpa/epoch_15",
108
  "pad_token": "<pad>",
109
  "special_tokens_map_file": null,
110
  "tokenizer_class": "T5Tokenizer",