lnxdx commited on
Commit
eed6b40
1 Parent(s): 78f7c2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -3
README.md CHANGED
@@ -63,7 +63,7 @@ It achieves the following results:
63
  - WER on ShEMO dev set: 32.85
64
  - WER on Common Voice 13 test set: 19.21
65
 
66
- ## Evaluation
67
  | Checkpoint Name | WER on ShEMO dev set | WER on Common Voice 13 test set | Max :) |
68
  | :---------------------------------------------------------------------------------------------------------------: | :------: | :-------: | :---: |
69
  | [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 46.55 | **17.43** | 46.55 |
@@ -75,7 +75,8 @@ As you can see, my model performs better in maximum case :D
75
 
76
  ## Training procedure
77
 
78
- #### Training hyperparameters
 
79
 
80
  The following hyperparameters were used during training:
81
  - learning_rate: 1e-05
@@ -90,6 +91,8 @@ The following hyperparameters were used during training:
90
  - training_steps: 2000
91
  - mixed_precision_training: Native AMP
92
 
 
 
93
  #### Training results
94
 
95
  | Training Loss | Epoch | Step | Validation Loss | Wer |
@@ -168,9 +171,14 @@ As you can see this model performs better with WER metric on validation(evaluati
168
 
169
  The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ShEMO_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb).
170
 
 
 
171
  #### Framework versions
172
 
173
  - Transformers 4.35.2
174
  - Pytorch 2.1.0+cu118
175
  - Datasets 2.15.0
176
- - Tokenizers 0.15.0
 
 
 
 
63
  - WER on ShEMO dev set: 32.85
64
  - WER on Common Voice 13 test set: 19.21
65
 
66
+ ## Evaluation results 🌡️
67
  | Checkpoint Name | WER on ShEMO dev set | WER on Common Voice 13 test set | Max :) |
68
  | :---------------------------------------------------------------------------------------------------------------: | :------: | :-------: | :---: |
69
  | [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 46.55 | **17.43** | 46.55 |
 
75
 
76
  ## Training procedure
77
 
78
+ ##### Training hyperparameters
79
+ **Training hyperparameters**
80
 
81
  The following hyperparameters were used during training:
82
  - learning_rate: 1e-05
 
91
  - training_steps: 2000
92
  - mixed_precision_training: Native AMP
93
 
94
+ You may need *gradient_accumulation* because you need more batch size.
95
+
96
  #### Training results
97
 
98
  | Training Loss | Epoch | Step | Validation Loss | Wer |
 
171
 
172
  The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ShEMO_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb).
173
 
174
+ Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information.
175
+
176
  #### Framework versions
177
 
178
  - Transformers 4.35.2
179
  - Pytorch 2.1.0+cu118
180
  - Datasets 2.15.0
181
+ - Tokenizers 0.15.0
182
+
183
+ Contact us 🤝
184
+ If you have any technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the *best* way to reach us.