Update README.md
Browse files
README.md
CHANGED
@@ -63,7 +63,7 @@ It achieves the following results:
|
|
63 |
- WER on ShEMO dev set: 32.85
|
64 |
- WER on Common Voice 13 test set: 19.21
|
65 |
|
66 |
-
## Evaluation
|
67 |
| Checkpoint Name | WER on ShEMO dev set | WER on Common Voice 13 test set | Max :) |
|
68 |
| :---------------------------------------------------------------------------------------------------------------: | :------: | :-------: | :---: |
|
69 |
| [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 46.55 | **17.43** | 46.55 |
|
@@ -75,7 +75,8 @@ As you can see, my model performs better in maximum case :D
|
|
75 |
|
76 |
## Training procedure
|
77 |
|
78 |
-
|
|
|
79 |
|
80 |
The following hyperparameters were used during training:
|
81 |
- learning_rate: 1e-05
|
@@ -90,6 +91,8 @@ The following hyperparameters were used during training:
|
|
90 |
- training_steps: 2000
|
91 |
- mixed_precision_training: Native AMP
|
92 |
|
|
|
|
|
93 |
#### Training results
|
94 |
|
95 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
@@ -168,9 +171,14 @@ As you can see this model performs better with WER metric on validation(evaluati
|
|
168 |
|
169 |
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ShEMO_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb).
|
170 |
|
|
|
|
|
171 |
#### Framework versions
|
172 |
|
173 |
- Transformers 4.35.2
|
174 |
- Pytorch 2.1.0+cu118
|
175 |
- Datasets 2.15.0
|
176 |
-
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
63 |
- WER on ShEMO dev set: 32.85
|
64 |
- WER on Common Voice 13 test set: 19.21
|
65 |
|
66 |
+
## Evaluation results 🌡️
|
67 |
| Checkpoint Name | WER on ShEMO dev set | WER on Common Voice 13 test set | Max :) |
|
68 |
| :---------------------------------------------------------------------------------------------------------------: | :------: | :-------: | :---: |
|
69 |
| [m3hrdadfi/wav2vec2-large-xlsr-persian-v3](https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v3) | 46.55 | **17.43** | 46.55 |
|
|
|
75 |
|
76 |
## Training procedure
|
77 |
|
78 |
+
##### Training hyperparameters
|
79 |
+
**Training hyperparameters**
|
80 |
|
81 |
The following hyperparameters were used during training:
|
82 |
- learning_rate: 1e-05
|
|
|
91 |
- training_steps: 2000
|
92 |
- mixed_precision_training: Native AMP
|
93 |
|
94 |
+
You may need *gradient_accumulation* because you need more batch size.
|
95 |
+
|
96 |
#### Training results
|
97 |
|
98 |
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
|
|
171 |
|
172 |
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ShEMO_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb).
|
173 |
|
174 |
+
Check out [this blog](https://huggingface.co/blog/fine-tune-xlsr-wav2vec2) for more information.
|
175 |
+
|
176 |
#### Framework versions
|
177 |
|
178 |
- Transformers 4.35.2
|
179 |
- Pytorch 2.1.0+cu118
|
180 |
- Datasets 2.15.0
|
181 |
+
- Tokenizers 0.15.0
|
182 |
+
|
183 |
+
Contact us 🤝
|
184 |
+
If you have any technical question regarding the model, pretraining, code or publication, please create an issue in the repository. This is the *best* way to reach us.
|