File size: 12,529 Bytes
fd90411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
license: apache-2.0
base_model: facebook/dinov2-large
tags:
- generated_from_trainer
model-index:
- name: drone-DinoVdeau-from-probs-large-2024_11_14-batch-size16_freeze_probs
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# drone-DinoVdeau-from-probs-large-2024_11_14-batch-size16_freeze_probs

This model is a fine-tuned version of [facebook/dinov2-large](https://huggingface.co/facebook/dinov2-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4672
- Rmse: 0.1550
- Mae: 0.1155
- Kl Divergence: 0.3295
- Explained Variance: 0.4649
- Learning Rate: 0.0000

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 150
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rmse   | Mae    | Kl Divergence | Explained Variance | Rate   |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:-------------:|:------------------:|:------:|
| No log        | 1.0   | 438   | 0.4934          | 0.1825 | 0.1294 | 0.9903        | 0.3297             | 0.001  |
| 0.5313        | 2.0   | 876   | 0.4789          | 0.1716 | 0.1262 | 0.6847        | 0.3731             | 0.001  |
| 0.4831        | 3.0   | 1314  | 0.4788          | 0.1709 | 0.1271 | 0.5498        | 0.3824             | 0.001  |
| 0.4773        | 4.0   | 1752  | 0.4766          | 0.1695 | 0.1278 | 0.3131        | 0.3979             | 0.001  |
| 0.476         | 5.0   | 2190  | 0.4765          | 0.1687 | 0.1277 | 0.4013        | 0.3970             | 0.001  |
| 0.4746        | 6.0   | 2628  | 0.4765          | 0.1689 | 0.1243 | 0.6370        | 0.3924             | 0.001  |
| 0.4738        | 7.0   | 3066  | 0.4763          | 0.1694 | 0.1292 | 0.4314        | 0.3911             | 0.001  |
| 0.4727        | 8.0   | 3504  | 0.4755          | 0.1681 | 0.1267 | 0.3379        | 0.4076             | 0.001  |
| 0.4727        | 9.0   | 3942  | 0.4734          | 0.1662 | 0.1250 | 0.4916        | 0.4072             | 0.001  |
| 0.4715        | 10.0  | 4380  | 0.4755          | 0.1677 | 0.1277 | 0.3348        | 0.4062             | 0.001  |
| 0.4714        | 11.0  | 4818  | 0.4731          | 0.1659 | 0.1255 | 0.3524        | 0.4154             | 0.001  |
| 0.4713        | 12.0  | 5256  | 0.4768          | 0.1690 | 0.1306 | 0.2383        | 0.4103             | 0.001  |
| 0.4722        | 13.0  | 5694  | 0.4737          | 0.1666 | 0.1223 | 0.6968        | 0.4028             | 0.001  |
| 0.472         | 14.0  | 6132  | 0.4737          | 0.1658 | 0.1254 | 0.3983        | 0.4099             | 0.001  |
| 0.4697        | 15.0  | 6570  | 0.4739          | 0.1664 | 0.1248 | 0.5620        | 0.4036             | 0.001  |
| 0.4721        | 16.0  | 7008  | 0.4720          | 0.1648 | 0.1231 | 0.6049        | 0.4159             | 0.001  |
| 0.4721        | 17.0  | 7446  | 0.4741          | 0.1664 | 0.1265 | 0.3072        | 0.4171             | 0.001  |
| 0.4709        | 18.0  | 7884  | 0.4738          | 0.1650 | 0.1253 | 0.3350        | 0.4239             | 0.001  |
| 0.4711        | 19.0  | 8322  | 0.4763          | 0.1672 | 0.1282 | 0.2746        | 0.4162             | 0.001  |
| 0.4696        | 20.0  | 8760  | 0.4756          | 0.1670 | 0.1245 | 0.5659        | 0.4060             | 0.001  |
| 0.4715        | 21.0  | 9198  | 0.4734          | 0.1662 | 0.1230 | 0.6154        | 0.4061             | 0.001  |
| 0.4714        | 22.0  | 9636  | 0.4744          | 0.1677 | 0.1223 | 0.7974        | 0.4027             | 0.001  |
| 0.4697        | 23.0  | 10074 | 0.4721          | 0.1639 | 0.1252 | 0.2307        | 0.4337             | 0.0001 |
| 0.4653        | 24.0  | 10512 | 0.4706          | 0.1631 | 0.1217 | 0.4219        | 0.4314             | 0.0001 |
| 0.4653        | 25.0  | 10950 | 0.4688          | 0.1612 | 0.1195 | 0.5242        | 0.4371             | 0.0001 |
| 0.4665        | 26.0  | 11388 | 0.4693          | 0.1620 | 0.1190 | 0.6159        | 0.4338             | 0.0001 |
| 0.4638        | 27.0  | 11826 | 0.4685          | 0.1607 | 0.1206 | 0.4046        | 0.4416             | 0.0001 |
| 0.4647        | 28.0  | 12264 | 0.4694          | 0.1616 | 0.1220 | 0.2860        | 0.4443             | 0.0001 |
| 0.4644        | 29.0  | 12702 | 0.4689          | 0.1614 | 0.1197 | 0.4270        | 0.4401             | 0.0001 |
| 0.4638        | 30.0  | 13140 | 0.4699          | 0.1619 | 0.1225 | 0.2625        | 0.4436             | 0.0001 |
| 0.4636        | 31.0  | 13578 | 0.4684          | 0.1607 | 0.1197 | 0.3876        | 0.4431             | 0.0001 |
| 0.463         | 32.0  | 14016 | 0.4678          | 0.1600 | 0.1195 | 0.4060        | 0.4467             | 0.0001 |
| 0.463         | 33.0  | 14454 | 0.4676          | 0.1596 | 0.1193 | 0.3688        | 0.4494             | 0.0001 |
| 0.4628        | 34.0  | 14892 | 0.4677          | 0.1600 | 0.1194 | 0.3900        | 0.4491             | 0.0001 |
| 0.4616        | 35.0  | 15330 | 0.4670          | 0.1593 | 0.1189 | 0.4282        | 0.4500             | 0.0001 |
| 0.4634        | 36.0  | 15768 | 0.4668          | 0.1591 | 0.1180 | 0.4446        | 0.4506             | 0.0001 |
| 0.462         | 37.0  | 16206 | 0.4669          | 0.1590 | 0.1185 | 0.3942        | 0.4528             | 0.0001 |
| 0.4631        | 38.0  | 16644 | 0.4665          | 0.1588 | 0.1177 | 0.4783        | 0.4512             | 0.0001 |
| 0.4603        | 39.0  | 17082 | 0.4674          | 0.1597 | 0.1190 | 0.3868        | 0.4500             | 0.0001 |
| 0.4614        | 40.0  | 17520 | 0.4677          | 0.1599 | 0.1195 | 0.3627        | 0.4498             | 0.0001 |
| 0.4614        | 41.0  | 17958 | 0.4682          | 0.1602 | 0.1211 | 0.2655        | 0.4540             | 0.0001 |
| 0.4612        | 42.0  | 18396 | 0.4665          | 0.1589 | 0.1172 | 0.5072        | 0.4514             | 0.0001 |
| 0.462         | 43.0  | 18834 | 0.4664          | 0.1585 | 0.1177 | 0.4306        | 0.4555             | 0.0001 |
| 0.4603        | 44.0  | 19272 | 0.4671          | 0.1594 | 0.1192 | 0.4115        | 0.4529             | 0.0001 |
| 0.4599        | 45.0  | 19710 | 0.4666          | 0.1590 | 0.1171 | 0.4417        | 0.4528             | 0.0001 |
| 0.4612        | 46.0  | 20148 | 0.4663          | 0.1585 | 0.1179 | 0.3686        | 0.4574             | 0.0001 |
| 0.4596        | 47.0  | 20586 | 0.4658          | 0.1582 | 0.1172 | 0.5090        | 0.4567             | 0.0001 |
| 0.4603        | 48.0  | 21024 | 0.4663          | 0.1589 | 0.1175 | 0.5279        | 0.4548             | 0.0001 |
| 0.4603        | 49.0  | 21462 | 0.4666          | 0.1591 | 0.1183 | 0.4497        | 0.4532             | 0.0001 |
| 0.4599        | 50.0  | 21900 | 0.4676          | 0.1595 | 0.1205 | 0.2712        | 0.4580             | 0.0001 |
| 0.4594        | 51.0  | 22338 | 0.4664          | 0.1586 | 0.1172 | 0.4008        | 0.4552             | 0.0001 |
| 0.4593        | 52.0  | 22776 | 0.4659          | 0.1583 | 0.1163 | 0.4922        | 0.4557             | 0.0001 |
| 0.4614        | 53.0  | 23214 | 0.4657          | 0.1579 | 0.1178 | 0.4274        | 0.4601             | 0.0001 |
| 0.4592        | 54.0  | 23652 | 0.4663          | 0.1585 | 0.1158 | 0.4574        | 0.4570             | 0.0001 |
| 0.4601        | 55.0  | 24090 | 0.4664          | 0.1586 | 0.1189 | 0.3486        | 0.4580             | 0.0001 |
| 0.4589        | 56.0  | 24528 | 0.4662          | 0.1584 | 0.1184 | 0.3016        | 0.4612             | 0.0001 |
| 0.4589        | 57.0  | 24966 | 0.4663          | 0.1587 | 0.1181 | 0.4163        | 0.4553             | 0.0001 |
| 0.4588        | 58.0  | 25404 | 0.4674          | 0.1593 | 0.1189 | 0.3399        | 0.4557             | 0.0001 |
| 0.4595        | 59.0  | 25842 | 0.4650          | 0.1572 | 0.1170 | 0.3686        | 0.4646             | 0.0001 |
| 0.4594        | 60.0  | 26280 | 0.4660          | 0.1584 | 0.1172 | 0.4535        | 0.4567             | 0.0001 |
| 0.4599        | 61.0  | 26718 | 0.4662          | 0.1585 | 0.1179 | 0.3751        | 0.4584             | 0.0001 |
| 0.4584        | 62.0  | 27156 | 0.4661          | 0.1583 | 0.1173 | 0.3534        | 0.4588             | 0.0001 |
| 0.4575        | 63.0  | 27594 | 0.4660          | 0.1583 | 0.1163 | 0.4048        | 0.4577             | 0.0001 |
| 0.4598        | 64.0  | 28032 | 0.4671          | 0.1588 | 0.1188 | 0.2471        | 0.4629             | 0.0001 |
| 0.4598        | 65.0  | 28470 | 0.4654          | 0.1577 | 0.1166 | 0.4526        | 0.4604             | 0.0001 |
| 0.4582        | 66.0  | 28908 | 0.4657          | 0.1582 | 0.1161 | 0.5259        | 0.4592             | 1e-05  |
| 0.4592        | 67.0  | 29346 | 0.4654          | 0.1574 | 0.1173 | 0.4252        | 0.4623             | 1e-05  |
| 0.4573        | 68.0  | 29784 | 0.4649          | 0.1572 | 0.1154 | 0.4989        | 0.4614             | 1e-05  |
| 0.4576        | 69.0  | 30222 | 0.4651          | 0.1570 | 0.1161 | 0.4023        | 0.4644             | 1e-05  |
| 0.4556        | 70.0  | 30660 | 0.4660          | 0.1576 | 0.1166 | 0.4118        | 0.4622             | 1e-05  |
| 0.4591        | 71.0  | 31098 | 0.4661          | 0.1578 | 0.1177 | 0.3075        | 0.4644             | 1e-05  |
| 0.4563        | 72.0  | 31536 | 0.4658          | 0.1580 | 0.1171 | 0.3836        | 0.4621             | 1e-05  |
| 0.4563        | 73.0  | 31974 | 0.4649          | 0.1569 | 0.1154 | 0.4544        | 0.4640             | 1e-05  |
| 0.4577        | 74.0  | 32412 | 0.4647          | 0.1567 | 0.1163 | 0.4538        | 0.4660             | 1e-05  |
| 0.4576        | 75.0  | 32850 | 0.4656          | 0.1573 | 0.1166 | 0.3348        | 0.4658             | 1e-05  |
| 0.457         | 76.0  | 33288 | 0.4647          | 0.1571 | 0.1158 | 0.4976        | 0.4645             | 1e-05  |
| 0.4574        | 77.0  | 33726 | 0.4651          | 0.1570 | 0.1163 | 0.3934        | 0.4653             | 1e-05  |
| 0.457         | 78.0  | 34164 | 0.4650          | 0.1571 | 0.1161 | 0.3936        | 0.4654             | 1e-05  |
| 0.4566        | 79.0  | 34602 | 0.4653          | 0.1573 | 0.1159 | 0.3759        | 0.4653             | 1e-05  |
| 0.458         | 80.0  | 35040 | 0.4647          | 0.1567 | 0.1162 | 0.4189        | 0.4660             | 1e-05  |
| 0.458         | 81.0  | 35478 | 0.4649          | 0.1571 | 0.1158 | 0.4751        | 0.4647             | 0.0000 |
| 0.456         | 82.0  | 35916 | 0.4654          | 0.1572 | 0.1161 | 0.4335        | 0.4651             | 0.0000 |
| 0.4564        | 83.0  | 36354 | 0.4647          | 0.1566 | 0.1161 | 0.3906        | 0.4667             | 0.0000 |
| 0.4575        | 84.0  | 36792 | 0.4643          | 0.1564 | 0.1157 | 0.3855        | 0.4677             | 0.0000 |
| 0.4557        | 85.0  | 37230 | 0.4653          | 0.1571 | 0.1173 | 0.3372        | 0.4669             | 0.0000 |
| 0.4587        | 86.0  | 37668 | 0.4655          | 0.1572 | 0.1184 | 0.2969        | 0.4686             | 0.0000 |
| 0.4564        | 87.0  | 38106 | 0.4652          | 0.1571 | 0.1173 | 0.3572        | 0.4670             | 0.0000 |
| 0.4565        | 88.0  | 38544 | 0.4656          | 0.1578 | 0.1151 | 0.5179        | 0.4627             | 0.0000 |
| 0.4565        | 89.0  | 38982 | 0.4654          | 0.1574 | 0.1177 | 0.2948        | 0.4670             | 0.0000 |
| 0.4569        | 90.0  | 39420 | 0.4650          | 0.1569 | 0.1167 | 0.3427        | 0.4674             | 0.0000 |
| 0.4561        | 91.0  | 39858 | 0.4655          | 0.1572 | 0.1173 | 0.2790        | 0.4691             | 0.0000 |
| 0.4575        | 92.0  | 40296 | 0.4646          | 0.1566 | 0.1153 | 0.4153        | 0.4672             | 0.0000 |
| 0.4569        | 93.0  | 40734 | 0.4649          | 0.1571 | 0.1153 | 0.4664        | 0.4645             | 0.0000 |
| 0.456         | 94.0  | 41172 | 0.4653          | 0.1568 | 0.1159 | 0.3859        | 0.4662             | 0.0000 |


### Framework versions

- Transformers 4.41.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.19.1