File size: 2,804 Bytes
81b6709 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
base_model: facebook/convnextv2-base-22k-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: Expert2-leaf-disease-convnextv2-base-22k-224-1_2_3
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9498025944726453
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Expert2-leaf-disease-convnextv2-base-22k-224-1_2_3
This model is a fine-tuned version of [facebook/convnextv2-base-22k-224](https://huggingface.co/facebook/convnextv2-base-22k-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1599
- Accuracy: 0.9498
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 300
- eval_batch_size: 300
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 1200
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 16
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.0623 | 0.96 | 13 | 0.6227 | 0.7456 |
| 0.5754 | 2.0 | 27 | 0.2772 | 0.8996 |
| 0.233 | 2.96 | 40 | 0.2167 | 0.9255 |
| 0.1972 | 4.0 | 54 | 0.1777 | 0.9425 |
| 0.1763 | 4.96 | 67 | 0.1742 | 0.9425 |
| 0.1631 | 6.0 | 81 | 0.1650 | 0.9459 |
| 0.1532 | 6.96 | 94 | 0.1708 | 0.9391 |
| 0.1384 | 8.0 | 108 | 0.1627 | 0.9442 |
| 0.1415 | 8.96 | 121 | 0.1662 | 0.9447 |
| 0.133 | 10.0 | 135 | 0.1620 | 0.9470 |
| 0.1362 | 10.96 | 148 | 0.1715 | 0.9442 |
| 0.1248 | 12.0 | 162 | 0.1628 | 0.9447 |
| 0.1217 | 12.96 | 175 | 0.1607 | 0.9475 |
| 0.1264 | 14.0 | 189 | 0.1587 | 0.9475 |
| 0.1178 | 14.96 | 202 | 0.1595 | 0.9498 |
| 0.1178 | 15.41 | 208 | 0.1599 | 0.9498 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.2.1
- Datasets 2.18.0
- Tokenizers 0.15.1
|