--- license: apache-2.0 base_model: facebook/convnextv2-base-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnextv2-base-1k-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.866822429906542 --- # convnextv2-base-1k-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [facebook/convnextv2-base-1k-224](https://huggingface.co/facebook/convnextv2-base-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3847 - Accuracy: 0.8668 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 300 - eval_batch_size: 300 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1200 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 16 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4746 | 0.98 | 16 | 1.1574 | 0.6150 | | 0.9672 | 1.97 | 32 | 0.8080 | 0.7084 | | 0.7544 | 2.95 | 48 | 0.6316 | 0.7832 | | 0.5568 | 4.0 | 65 | 0.5164 | 0.8350 | | 0.4714 | 4.98 | 81 | 0.4622 | 0.8486 | | 0.4361 | 5.97 | 97 | 0.4373 | 0.8509 | | 0.412 | 6.95 | 113 | 0.4347 | 0.8570 | | 0.3786 | 8.0 | 130 | 0.4091 | 0.8598 | | 0.3741 | 8.98 | 146 | 0.4161 | 0.8598 | | 0.3649 | 9.97 | 162 | 0.4062 | 0.8668 | | 0.3532 | 10.95 | 178 | 0.3931 | 0.8668 | | 0.3467 | 12.0 | 195 | 0.3884 | 0.8645 | | 0.3379 | 12.98 | 211 | 0.3850 | 0.8645 | | 0.3428 | 13.97 | 227 | 0.3911 | 0.8715 | | 0.3409 | 14.95 | 243 | 0.3887 | 0.8687 | | 0.3397 | 15.75 | 256 | 0.3847 | 0.8668 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1