lucas-meyer commited on
Commit
d0613e2
1 Parent(s): 73ee645

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - audiofolder
7
+ metrics:
8
+ - wer
9
+ model-index:
10
+ - name: xls-r-fleurs_nl-run3
11
+ results:
12
+ - task:
13
+ name: Automatic Speech Recognition
14
+ type: automatic-speech-recognition
15
+ dataset:
16
+ name: audiofolder
17
+ type: audiofolder
18
+ config: default
19
+ split: validation
20
+ args: default
21
+ metrics:
22
+ - name: Wer
23
+ type: wer
24
+ value: 0.42659804983748645
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # xls-r-fleurs_nl-run3
31
+
32
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the audiofolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.5523
35
+ - Wer: 0.4266
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 0.0003
55
+ - train_batch_size: 4
56
+ - eval_batch_size: 4
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 3
59
+ - total_train_batch_size: 12
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - num_epochs: 30
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
69
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
70
+ | 7.768 | 0.41 | 100 | 3.9649 | 1.0 |
71
+ | 3.2646 | 0.82 | 200 | 2.9551 | 1.0 |
72
+ | 2.9217 | 1.23 | 300 | 2.9128 | 1.0 |
73
+ | 2.9064 | 1.64 | 400 | 2.9067 | 1.0 |
74
+ | 2.6775 | 2.05 | 500 | 1.5774 | 0.9177 |
75
+ | 1.1026 | 2.47 | 600 | 0.8813 | 0.7216 |
76
+ | 0.6905 | 2.88 | 700 | 0.7287 | 0.6138 |
77
+ | 0.4936 | 3.29 | 800 | 0.6156 | 0.5439 |
78
+ | 0.3837 | 3.7 | 900 | 0.5608 | 0.4992 |
79
+ | 0.3176 | 4.11 | 1000 | 0.5326 | 0.4542 |
80
+ | 0.2391 | 4.52 | 1100 | 0.5221 | 0.4466 |
81
+ | 0.2426 | 4.93 | 1200 | 0.5127 | 0.4328 |
82
+ | 0.1882 | 5.34 | 1300 | 0.5311 | 0.4247 |
83
+ | 0.1718 | 5.75 | 1400 | 0.5523 | 0.4266 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.28.0
89
+ - Pytorch 2.0.1+cu117
90
+ - Datasets 2.14.4
91
+ - Tokenizers 0.13.3