--- license: apache-2.0 tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: xls-r-fleurs_nl-run3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Wer type: wer value: 0.42659804983748645 --- # xls-r-fleurs_nl-run3 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (nl) dataset. It achieves the following results: - Wer (Validation): 40.48% - Wer (Test): 40.89% ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer (Train) | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.768 | 0.41 | 100 | 3.9649 | 1.0 | | 3.2646 | 0.82 | 200 | 2.9551 | 1.0 | | 2.9217 | 1.23 | 300 | 2.9128 | 1.0 | | 2.9064 | 1.64 | 400 | 2.9067 | 1.0 | | 2.6775 | 2.05 | 500 | 1.5774 | 0.9177 | | 1.1026 | 2.47 | 600 | 0.8813 | 0.7216 | | 0.6905 | 2.88 | 700 | 0.7287 | 0.6138 | | 0.4936 | 3.29 | 800 | 0.6156 | 0.5439 | | 0.3837 | 3.7 | 900 | 0.5608 | 0.4992 | | 0.3176 | 4.11 | 1000 | 0.5326 | 0.4542 | | 0.2391 | 4.52 | 1100 | 0.5221 | 0.4466 | | 0.2426 | 4.93 | 1200 | 0.5127 | 0.4328 | | 0.1882 | 5.34 | 1300 | 0.5311 | 0.4247 | | 0.1718 | 5.75 | 1400 | 0.5523 | 0.4266 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3