File size: 4,917 Bytes
6a65d17
b3113ac
 
6a65d17
 
b3113ac
 
6a65d17
c7bc7d9
6a65d17
c7bc7d9
6a65d17
c7bc7d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a65d17
 
c7bc7d9
6a65d17
b3113ac
b88e18b
b3113ac
 
 
6a65d17
 
 
c7bc7d9
 
 
ac84ada
6a65d17
 
 
c7bc7d9
 
 
 
 
6a65d17
 
 
c7bc7d9
b88e18b
c7bc7d9
b88e18b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a65d17
 
 
 
b88e18b
6a65d17
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
language:
- uz
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: XLS-R-300M Uzbek CV8
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 8
      type: mozilla-foundation/common_voice_8_0
      args: uz
    metrics:
       - name: Test WER (no LM)
         type: wer
         value: 32.88
       - name: Test CER (no LM)
         type: cer
         value: 6.53
---

# XLS-R-300M Uzbek CV8

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UZ dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3063
- Wer: 0.3852
- Cer: 0.0777

## Model description

For a description of the model architecture, see [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m)

The model vocabulary consists of the [Modern Latin alphabet for Uzbek](https://en.wikipedia.org/wiki/Uzbek_alphabet), with punctuation removed. 
Note that the characters <‘> and <’> do not count as punctuation, as <‘> modifies \<o\> and \<g\>, and <’> indicates the glottal stop or a long vowel.

## Intended uses & limitations

This model is expected to be of some utility for low-fidelity use cases such as:
- Draft video captions
- Indexing of recorded broadcasts

The model is not reliable enough to use as a substitute for live captions for accessibility purposes, and it should not be used in a manner that would infringe the privacy of any of the contributors to the Common Voice dataset nor any other speakers.

## Training and evaluation data

The 50% of the `train` common voice official split was used as training data. The 50% of the official `dev` split was used as validation data, and the full `test` set was used for final evaluation.

The kenlm language model was compiled from the target sentences of the train + other datasets.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 3.1401        | 3.25  | 500   | 3.1146          | 1.0    | 1.0    |
| 2.7484        | 6.49  | 1000  | 2.2842          | 1.0065 | 0.7069 |
| 1.0899        | 9.74  | 1500  | 0.5414          | 0.6125 | 0.1351 |
| 0.9465        | 12.99 | 2000  | 0.4566          | 0.5635 | 0.1223 |
| 0.8771        | 16.23 | 2500  | 0.4212          | 0.5366 | 0.1161 |
| 0.8346        | 19.48 | 3000  | 0.3994          | 0.5144 | 0.1102 |
| 0.8127        | 22.73 | 3500  | 0.3819          | 0.4944 | 0.1051 |
| 0.7833        | 25.97 | 4000  | 0.3705          | 0.4798 | 0.1011 |
| 0.7603        | 29.22 | 4500  | 0.3661          | 0.4704 | 0.0992 |
| 0.7424        | 32.47 | 5000  | 0.3529          | 0.4577 | 0.0957 |
| 0.7251        | 35.71 | 5500  | 0.3410          | 0.4473 | 0.0928 |
| 0.7106        | 38.96 | 6000  | 0.3401          | 0.4428 | 0.0919 |
| 0.7027        | 42.21 | 6500  | 0.3355          | 0.4353 | 0.0905 |
| 0.6927        | 45.45 | 7000  | 0.3308          | 0.4296 | 0.0885 |
| 0.6828        | 48.7  | 7500  | 0.3246          | 0.4204 | 0.0863 |
| 0.6706        | 51.95 | 8000  | 0.3250          | 0.4233 | 0.0868 |
| 0.6629        | 55.19 | 8500  | 0.3264          | 0.4159 | 0.0849 |
| 0.6556        | 58.44 | 9000  | 0.3213          | 0.4100 | 0.0835 |
| 0.6484        | 61.69 | 9500  | 0.3182          | 0.4124 | 0.0837 |
| 0.6407        | 64.93 | 10000 | 0.3171          | 0.4050 | 0.0825 |
| 0.6375        | 68.18 | 10500 | 0.3150          | 0.4039 | 0.0822 |
| 0.6363        | 71.43 | 11000 | 0.3129          | 0.3991 | 0.0810 |
| 0.6307        | 74.67 | 11500 | 0.3114          | 0.3986 | 0.0807 |
| 0.6232        | 77.92 | 12000 | 0.3103          | 0.3895 | 0.0790 |
| 0.6216        | 81.17 | 12500 | 0.3086          | 0.3891 | 0.0790 |
| 0.6174        | 84.41 | 13000 | 0.3082          | 0.3881 | 0.0785 |
| 0.6196        | 87.66 | 13500 | 0.3059          | 0.3875 | 0.0782 |
| 0.6174        | 90.91 | 14000 | 0.3084          | 0.3862 | 0.0780 |
| 0.6169        | 94.16 | 14500 | 0.3070          | 0.3860 | 0.0779 |
| 0.6166        | 97.4  | 15000 | 0.3066          | 0.3855 | 0.0778 |


### Framework versions

- Transformers 4.16.2
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0