|
#include "lm/wrappers/nplm.hh" |
|
#include "util/exception.hh" |
|
#include "util/file.hh" |
|
|
|
#include <algorithm> |
|
#include <cstring> |
|
|
|
#include "neuralLM.h" |
|
|
|
namespace lm { |
|
namespace np { |
|
|
|
Vocabulary::Vocabulary(const nplm::vocabulary &vocab) |
|
: base::Vocabulary(vocab.lookup_word("<s>"), vocab.lookup_word("</s>"), vocab.lookup_word("<unk>")), |
|
vocab_(vocab), null_word_(vocab.lookup_word("<null>")) {} |
|
|
|
Vocabulary::~Vocabulary() {} |
|
|
|
WordIndex Vocabulary::Index(const std::string &str) const { |
|
return vocab_.lookup_word(str); |
|
} |
|
|
|
class Backend { |
|
public: |
|
Backend(const nplm::neuralLM &from, const std::size_t cache_size) : lm_(from), ngram_(from.get_order()) { |
|
lm_.set_cache(cache_size); |
|
} |
|
|
|
nplm::neuralLM &LM() { return lm_; } |
|
const nplm::neuralLM &LM() const { return lm_; } |
|
|
|
Eigen::Matrix<int,Eigen::Dynamic,1> &staging_ngram() { return ngram_; } |
|
|
|
double lookup_from_staging() { return lm_.lookup_ngram(ngram_); } |
|
|
|
int order() const { return lm_.get_order(); } |
|
|
|
private: |
|
nplm::neuralLM lm_; |
|
Eigen::Matrix<int,Eigen::Dynamic,1> ngram_; |
|
}; |
|
|
|
bool Model::Recognize(const std::string &name) { |
|
try { |
|
util::scoped_fd file(util::OpenReadOrThrow(name.c_str())); |
|
char magic_check[16]; |
|
util::ReadOrThrow(file.get(), magic_check, sizeof(magic_check)); |
|
const char nnlm_magic[] = "\\config\nversion "; |
|
return !memcmp(magic_check, nnlm_magic, 16); |
|
} catch (const util::Exception &) { |
|
return false; |
|
} |
|
} |
|
|
|
namespace { |
|
nplm::neuralLM *LoadNPLM(const std::string &file) { |
|
util::scoped_ptr<nplm::neuralLM> ret(new nplm::neuralLM()); |
|
ret->read(file); |
|
return ret.release(); |
|
} |
|
} |
|
|
|
Model::Model(const std::string &file, std::size_t cache) |
|
: base_instance_(LoadNPLM(file)), vocab_(base_instance_->get_vocabulary()), cache_size_(cache) { |
|
UTIL_THROW_IF(base_instance_->get_order() > NPLM_MAX_ORDER, util::Exception, "This NPLM has order " << (unsigned int)base_instance_->get_order() << " but the KenLM wrapper was compiled with " << NPLM_MAX_ORDER << ". Change the defintion of NPLM_MAX_ORDER and recompile."); |
|
|
|
base_instance_->set_log_base(10.0); |
|
State begin_sentence, null_context; |
|
std::fill(begin_sentence.words, begin_sentence.words + NPLM_MAX_ORDER - 1, base_instance_->lookup_word("<s>")); |
|
null_word_ = base_instance_->lookup_word("<null>"); |
|
std::fill(null_context.words, null_context.words + NPLM_MAX_ORDER - 1, null_word_); |
|
|
|
Init(begin_sentence, null_context, vocab_, base_instance_->get_order()); |
|
} |
|
|
|
Model::~Model() {} |
|
|
|
FullScoreReturn Model::FullScore(const State &from, const WordIndex new_word, State &out_state) const { |
|
Backend *backend = backend_.get(); |
|
if (!backend) { |
|
backend = new Backend(*base_instance_, cache_size_); |
|
backend_.reset(backend); |
|
} |
|
|
|
FullScoreReturn ret; |
|
for (int i = 0; i < backend->order() - 1; ++i) { |
|
backend->staging_ngram()(i) = from.words[i]; |
|
} |
|
backend->staging_ngram()(backend->order() - 1) = new_word; |
|
ret.prob = backend->lookup_from_staging(); |
|
|
|
ret.ngram_length = backend->order(); |
|
|
|
memcpy(out_state.words, from.words + 1, sizeof(WordIndex) * (backend->order() - 2)); |
|
out_state.words[backend->order() - 2] = new_word; |
|
|
|
memset(out_state.words + backend->order() - 1, 0, sizeof(WordIndex) * (NPLM_MAX_ORDER - backend->order())); |
|
return ret; |
|
} |
|
|
|
|
|
FullScoreReturn Model::FullScoreForgotState(const WordIndex *context_rbegin, const WordIndex *context_rend, const WordIndex new_word, State &out_state) const { |
|
|
|
std::size_t state_length = std::min<std::size_t>(Order() - 1, context_rend - context_rbegin); |
|
State state; |
|
|
|
for (lm::WordIndex *i = state.words; i < state.words + Order() - 1 - state_length; ++i) { |
|
*i = null_word_; |
|
} |
|
|
|
std::reverse_copy(context_rbegin, context_rbegin + state_length, state.words + Order() - 1 - state_length); |
|
return FullScore(state, new_word, out_state); |
|
} |
|
|
|
} |
|
} |
|
|