|
from typing import Dict, List, Any |
|
from transformers import pipeline |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.pipeline = pipeline("visual-question-answering", model=path) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str`) |
|
date (:obj: `str`) |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
|
|
inputs = data.pop("inputs", data) |
|
top_k = inputs.get("top_k", 10) |
|
question = inputs.get("question", 'Whats the negative of "You provided a question"?') |
|
image = inputs.get("image", "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg") |
|
|
|
|
|
prediction = self.pipeline(image, question, top_k=10) |
|
return prediction |