Liyan06
handle small chunk size
67a6912
# Adapt code from https://github.com/yuh-zha/AlignScore/tree/main
import sys
sys.path.append("..")
import nltk
nltk.download('punkt')
from nltk.tokenize import sent_tokenize
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification
import torch.nn as nn
from tqdm import tqdm
import torch.nn.functional as F
import os
def sent_tokenize_with_newlines(text):
blocks = text.split('\n')
tokenized_blocks = [sent_tokenize(block) for block in blocks]
tokenized_text = []
for block in tokenized_blocks:
tokenized_text.extend(block)
tokenized_text.append('\n')
return tokenized_text[:-1]
class Inferencer():
def __init__(self, path, max_input_length, batch_size) -> None:
self.path = path
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
self.model = AutoModelForSeq2SeqLM.from_pretrained(path).to(self.device)
self.tokenizer = AutoTokenizer.from_pretrained(path)
self.default_chunk_size = 500
self.chunk_size=500
self.max_input_length=2048 if max_input_length is None else max_input_length
self.max_output_length = 256
self.model.eval()
self.batch_size = batch_size
self.softmax = nn.Softmax(dim=-1)
def inference_example_batch(self, doc: list, claim: list):
"""
inference a example,
doc: list
claim: list
using self.inference to batch the process
"""
assert len(doc) == len(claim), "doc must has the same length with claimthesis!"
max_support_probs = []
used_chunks = []
support_prob_per_chunk = []
for one_doc, one_claim in tqdm(zip(doc, claim), desc="Evaluating", total=len(doc)):
output = self.inference_per_example(one_doc, one_claim)
max_support_probs.append(output['max_support_prob'])
used_chunks.append(output['used_chunks'])
support_prob_per_chunk.append(output['support_prob_per_chunk'])
return {
'max_support_probs': max_support_probs,
'used_chunks': used_chunks,
'support_prob_per_chunk': support_prob_per_chunk
}
def inference_per_example(self, doc:str, claim: str):
"""
inference a example,
doc: string
claim: string
using self.inference to batch the process
"""
def chunks(lst, n):
"""Yield successive chunks from lst with each having approximately n tokens.
For flan-t5, we split using the white space;
For roberta and deberta, we split using the tokenization.
"""
current_chunk = []
current_word_count = 0
for sentence in lst:
sentence_word_count = len(sentence.split())
if current_word_count + sentence_word_count > n:
yield ' '.join(current_chunk)
current_chunk = [sentence]
current_word_count = sentence_word_count
else:
current_chunk.append(sentence)
current_word_count += sentence_word_count
if current_chunk:
yield ' '.join(current_chunk)
doc_sents = sent_tokenize_with_newlines(doc)
doc_sents = doc_sents or ['']
doc_chunks = [chunk.replace(" \n ", '\n').strip() for chunk in chunks(doc_sents, self.chunk_size)]
doc_chunks = [chunk for chunk in doc_chunks if chunk != ''] # this should be added to the real code to remove empty chunks
'''
[chunk_1, chunk_2, chunk_3, chunk_4, ...]
[claim]
'''
claim_repeat = [claim] * len(doc_chunks)
output = self.inference(doc_chunks, claim_repeat)
return output
def inference(self, doc, claim):
"""
inference a list of doc and claim
Standard aggregation (max) over chunks of doc
Note: We do not have any post-processing steps for 'claim'
and directly check 'doc' against 'claim'. If there are multiple
sentences in 'claim'. Sentences are not splitted and are checked
as a single piece of text.
If there are multiple sentences in 'claim', we suggest users to
split 'claim' into sentences beforehand and prepares data like
(doc, claim_1), (doc, claim_2), ... for a multi-sentence 'claim'.
**We leave the user to decide how to aggregate the results from multiple sentences.**
Note: AggreFact-CNN is the only dataset that contains three-sentence
summaries and have annotations on the whole summaries, so we do not
split the sentences in each 'claim' during prediciotn for simplicity.
Therefore, for this dataset, our result is based on treating the whole
summary as a single piece of text (one 'claim').
In general, sentence-level prediciton performance is better than that on
the full-response-level.
"""
if isinstance(doc, str) and isinstance(claim, str):
doc = [doc]
claim = [claim]
batch_input, _, batch_org_chunks = self.batch_tokenize(doc, claim)
label_probs_list = []
used_chunks = []
for mini_batch_input, batch_org_chunk in zip(batch_input, batch_org_chunks):
mini_batch_input = {k: v.to(self.device) for k, v in mini_batch_input.items()}
with torch.no_grad():
decoder_input_ids = torch.zeros((mini_batch_input['input_ids'].size(0), 1), dtype=torch.long).to(self.device)
outputs = self.model(input_ids=mini_batch_input['input_ids'], attention_mask=mini_batch_input['attention_mask'], decoder_input_ids=decoder_input_ids)
logits = outputs.logits.squeeze(1)
# 3 for no support and 209 for support
label_logits = logits[:, torch.tensor([3, 209])].cpu()
label_probs = torch.nn.functional.softmax(label_logits, dim=-1)
label_probs_list.append(label_probs)
used_chunks.extend(batch_org_chunk)
label_probs = torch.cat(label_probs_list)
support_prob_per_chunk = label_probs[:, 1].cpu().numpy()
max_support_prob = label_probs[:, 1].max().item()
return {
'max_support_prob': max_support_prob,
'used_chunks': used_chunks,
'support_prob_per_chunk': support_prob_per_chunk
}
def batch_tokenize(self, doc, claim):
"""
input doc and claims are lists
"""
assert isinstance(doc, list) and isinstance(claim, list)
assert len(doc) == len(claim), "doc and claim should be in the same length."
original_text = [self.tokenizer.eos_token.join([one_doc, one_claim]) for one_doc, one_claim in zip(doc, claim)]
batch_input = []
batch_concat_text = []
batch_org_chunks = []
for mini_batch in self.chunks(original_text, self.batch_size):
model_inputs = self.tokenizer(
['predict: ' + text for text in mini_batch],
max_length=self.max_input_length,
truncation=True,
padding=True,
return_tensors="pt"
)
batch_input.append(model_inputs)
batch_concat_text.append(mini_batch)
batch_org_chunks.append([item[:item.find('</s>')] for item in mini_batch])
return batch_input, batch_concat_text, batch_org_chunks
def chunks(self, lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def fact_check(self, doc, claim):
outputs = self.inference_example_batch(doc, claim)
return outputs['max_support_probs'], outputs['used_chunks'], outputs['support_prob_per_chunk']