Liyan06
customize chunk_size in score function
09efa05
# Adapt code from https://github.com/yuh-zha/AlignScore/tree/main
import sys
sys.path.append("..")
from minicheck_web.inference import Inferencer
from typing import List, Dict
import numpy as np
class MiniCheck:
def __init__(self, path, max_input_length=None, batch_size=16) -> None:
self.model = Inferencer(
path=path,
batch_size=batch_size,
max_input_length=max_input_length,
)
def score(self, data: Dict) -> List[float]:
'''
pred_labels: 0 / 1 (0: unsupported, 1: supported)
max_support_probs: the probability of "supported" for the chunk that determin the final pred_label
used_chunks: divided chunks of the input document
support_prob_per_chunk: the probability of "supported" for each chunk
'''
inputs = data['inputs']
docs = inputs['docs']
claims = inputs['claims']
if 'chunk_size' in inputs:
self.model.chunk_size = int(inputs['chunk_size'])
else:
self.model.chunk_size = self.model.default_chunk_size
assert isinstance(docs, list) or isinstance(docs, np.ndarray), f"docs must be a list or np.ndarray"
assert isinstance(claims, list) or isinstance(claims, np.ndarray), f"claims must be a list or np.ndarray"
max_support_prob, used_chunk, support_prob_per_chunk = self.model.fact_check(docs, claims)
pred_label = [1 if prob > 0.5 else 0 for prob in max_support_prob]
return pred_label, max_support_prob, used_chunk, support_prob_per_chunk