Liyan06
commited on
Commit
·
3fe4664
1
Parent(s):
3fbb656
add span highlight (rogue) for neg chunk
Browse files- handler.py +47 -29
handler.py
CHANGED
@@ -5,6 +5,7 @@ import evaluate
|
|
5 |
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
8 |
|
9 |
|
10 |
def sort_chunks_single_doc_claim(used_chunk, support_prob_per_chunk):
|
@@ -51,7 +52,9 @@ class EndpointHandler():
|
|
51 |
def __init__(self, path="./"):
|
52 |
self.scorer = MiniCheck(path=path)
|
53 |
self.rouge = evaluate.load('rouge')
|
|
|
54 |
self.tfidf_order = True
|
|
|
55 |
|
56 |
|
57 |
def __call__(self, data):
|
@@ -64,20 +67,17 @@ class EndpointHandler():
|
|
64 |
_, _, used_chunk, support_prob_per_chunk = self.scorer.score(data=data)
|
65 |
ranked_docs, scores = sort_chunks_single_doc_claim(used_chunk, support_prob_per_chunk)
|
66 |
|
67 |
-
span_to_highlight = []
|
68 |
-
for doc_chunk
|
69 |
-
|
70 |
-
|
71 |
-
highest_score_sent, _ = self.chunk_and_highest_rouge_score(doc_chunk, claim)
|
72 |
-
span_to_highlight.append(highest_score_sent)
|
73 |
-
else:
|
74 |
-
span_to_highlight.append("")
|
75 |
|
76 |
outputs = {
|
77 |
'ranked_docs': ranked_docs,
|
78 |
'scores': scores,
|
79 |
'span_to_highlight': span_to_highlight,
|
80 |
-
'entities': ents
|
|
|
81 |
}
|
82 |
|
83 |
else:
|
@@ -85,21 +85,18 @@ class EndpointHandler():
|
|
85 |
|
86 |
ranked_docs, scores, ranked_urls = self.search_relevant_docs(claim, tfidf_order=self.tfidf_order)
|
87 |
|
88 |
-
span_to_highlight = []
|
89 |
-
for doc_chunk
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
span_to_highlight.append(highest_score_sent)
|
94 |
-
else:
|
95 |
-
span_to_highlight.append("")
|
96 |
-
|
97 |
outputs = {
|
98 |
'ranked_docs': ranked_docs,
|
99 |
'scores': scores,
|
100 |
'ranked_urls': ranked_urls,
|
101 |
'span_to_highlight': span_to_highlight,
|
102 |
-
'entities': ents
|
|
|
103 |
}
|
104 |
|
105 |
return outputs
|
@@ -159,10 +156,9 @@ class EndpointHandler():
|
|
159 |
return ranked_docs, scores, ranked_urls
|
160 |
|
161 |
|
162 |
-
def chunk_and_highest_rouge_score(self, doc, claim):
|
163 |
-
|
164 |
'''
|
165 |
-
Given a document and a claim, return the
|
166 |
'''
|
167 |
|
168 |
doc_sentences = sent_tokenize(doc)
|
@@ -173,11 +169,33 @@ class EndpointHandler():
|
|
173 |
references=claims,
|
174 |
use_aggregator=False)
|
175 |
|
176 |
-
|
177 |
-
|
|
|
178 |
for i in range(len(doc_sentences)):
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
+
from heapq import heappush, heappop
|
9 |
|
10 |
|
11 |
def sort_chunks_single_doc_claim(used_chunk, support_prob_per_chunk):
|
|
|
52 |
def __init__(self, path="./"):
|
53 |
self.scorer = MiniCheck(path=path)
|
54 |
self.rouge = evaluate.load('rouge')
|
55 |
+
|
56 |
self.tfidf_order = True
|
57 |
+
self.num_highlights = 1
|
58 |
|
59 |
|
60 |
def __call__(self, data):
|
|
|
67 |
_, _, used_chunk, support_prob_per_chunk = self.scorer.score(data=data)
|
68 |
ranked_docs, scores = sort_chunks_single_doc_claim(used_chunk, support_prob_per_chunk)
|
69 |
|
70 |
+
span_to_highlight, rouge_score = [], []
|
71 |
+
for doc_chunk in ranked_docs:
|
72 |
+
highest_score_sent, rouge_score = self.chunk_and_highest_rouge_score(doc_chunk, claim, k=self.num_highlights)
|
73 |
+
span_to_highlight.append(highest_score_sent)
|
|
|
|
|
|
|
|
|
74 |
|
75 |
outputs = {
|
76 |
'ranked_docs': ranked_docs,
|
77 |
'scores': scores,
|
78 |
'span_to_highlight': span_to_highlight,
|
79 |
+
'entities': ents,
|
80 |
+
'rouge_score': rouge_score
|
81 |
}
|
82 |
|
83 |
else:
|
|
|
85 |
|
86 |
ranked_docs, scores, ranked_urls = self.search_relevant_docs(claim, tfidf_order=self.tfidf_order)
|
87 |
|
88 |
+
span_to_highlight, rouge_score = [], []
|
89 |
+
for doc_chunk in ranked_docs:
|
90 |
+
highest_score_sent, rouge_score = self.chunk_and_highest_rouge_score(doc_chunk, claim, k=self.num_highlights)
|
91 |
+
span_to_highlight.append(highest_score_sent)
|
92 |
+
|
|
|
|
|
|
|
|
|
93 |
outputs = {
|
94 |
'ranked_docs': ranked_docs,
|
95 |
'scores': scores,
|
96 |
'ranked_urls': ranked_urls,
|
97 |
'span_to_highlight': span_to_highlight,
|
98 |
+
'entities': ents,
|
99 |
+
'rouge_score': rouge_score
|
100 |
}
|
101 |
|
102 |
return outputs
|
|
|
156 |
return ranked_docs, scores, ranked_urls
|
157 |
|
158 |
|
159 |
+
def chunk_and_highest_rouge_score(self, doc, claim, k=1):
|
|
|
160 |
'''
|
161 |
+
Given a document and a claim, return the top k sentences with the highest rouge scores and their scores
|
162 |
'''
|
163 |
|
164 |
doc_sentences = sent_tokenize(doc)
|
|
|
169 |
references=claims,
|
170 |
use_aggregator=False)
|
171 |
|
172 |
+
# Initialize a min heap to store the top k sentences and their scores
|
173 |
+
top_k_heap = []
|
174 |
+
|
175 |
for i in range(len(doc_sentences)):
|
176 |
+
score = results['rouge1'][i]
|
177 |
+
sentence = doc_sentences[i]
|
178 |
+
|
179 |
+
# If the heap has less than k elements, push the current sentence and score
|
180 |
+
if len(top_k_heap) < k:
|
181 |
+
heappush(top_k_heap, (score, sentence))
|
182 |
+
else:
|
183 |
+
# If the current score is higher than the minimum score in the heap,
|
184 |
+
# remove the minimum and push the current sentence and score
|
185 |
+
if score > top_k_heap[0][0]:
|
186 |
+
heappop(top_k_heap)
|
187 |
+
heappush(top_k_heap, (score, sentence))
|
188 |
+
|
189 |
+
# Extract the top k sentences and scores from the heap
|
190 |
+
top_k_sentences = []
|
191 |
+
top_k_scores = []
|
192 |
+
while top_k_heap:
|
193 |
+
score, sentence = heappop(top_k_heap)
|
194 |
+
top_k_sentences.append(sentence)
|
195 |
+
top_k_scores.append(score)
|
196 |
+
|
197 |
+
# Reverse the order of sentences and scores to get them in descending order
|
198 |
+
top_k_sentences = top_k_sentences[::-1]
|
199 |
+
top_k_scores = top_k_scores[::-1]
|
200 |
+
|
201 |
+
return top_k_sentences, top_k_scores
|