# Some functions are adapted from https://github.com/yuxiaw/Factcheck-GPT import concurrent.futures import requests import bs4 import re from typing import List, Tuple import itertools import numpy as np from time import time from requests.adapters import HTTPAdapter from urllib3.util.retry import Retry import spacy from spacy.cli import download try: nlp = spacy.load("en_core_web_lg") except: # If loading fails, download the model download("en_core_web_lg") nlp = spacy.load("en_core_web_lg") def extract_entities(text): text = nlp(text) ents = list({ent.text for ent in text.ents}) return ents def is_tag_visible(element: bs4.element) -> bool: """Determines if an HTML element is visible. Args: element: A BeautifulSoup element to check the visiblity of. returns: Whether the element is visible. """ if element.parent.name in [ "style", "script", "head", "title", "meta", "[document]", ] or isinstance(element, bs4.element.Comment): return False return True def scrape_url(url: str, timeout=10) -> Tuple[str, str]: """Scrapes a URL for all text information. Args: url: URL of webpage to scrape. timeout: Timeout of the requests call. Returns: web_text: The visible text of the scraped URL. url: URL input. """ # Scrape the URL try: response = requests.get(url, timeout=timeout) response.raise_for_status() except requests.exceptions.RequestException as _: return None, url # Extract out all text from the tags try: soup = bs4.BeautifulSoup(response.text, "html.parser") texts = soup.findAll(string=True) # Filter out invisible text from the page. visible_text = filter(is_tag_visible, texts) except Exception as _: return None, url # Returns all the text concatenated as a string. web_text = " ".join(t.strip() for t in visible_text).strip() # Clean up spacing. web_text = " ".join(web_text.split()) return web_text, url def search_google(query:str, num_web_pages:int=10, timeout:int=6, save_url:str='') -> List[str]: """Searches the query using Google. Args: query: Search query. num_web_pages: the number of web pages to request. save_url: path to save returned urls, such as 'urls.txt' Returns: search_results: A list of the top URLs relevant to the query. """ # set headers: Google returns different web-pages according to agent device # desktop user-agent USER_AGENT = "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.14; rv:65.0) Gecko/20100101 Firefox/65.0" headers = {'User-Agent': USER_AGENT} # set language # set the Google interface language, use &hl=XX # set the preferred language of the search results, use &lr=lang_XX # set language as en, otherwise it will return many translation web pages to Arabic that can't be opened correctly. lang = "en" # scrape google results all_urls = [] for search_query in [query]: for page in range(0, num_web_pages, 10): # here page is google search's bottom page meaning, click 2 -> start=10 # url = "https://www.google.com/search?q={}&start={}".format(query, page) # url = "https://www.google.com/search?q={}&lr=lang_{}&hl={}&start={}".format(search_query, lang, lang, page) url = f"https://www.google.com/search?q={search_query}&start={page}" r = requests.get(url, headers=headers, timeout=timeout) # collect all urls by regular expression # how to do if I just want to have the returned top-k pages? urls = re.findall('href="(https?://.*?)"', r.text) urls = [url for url in urls if 'google.com' not in url and '.pdf' not in url] # can be inproved based on TF-IDF later all_urls.extend(urls) all_urls_final = [] for url in all_urls: if url not in all_urls_final: all_urls_final.append(url) # save all url into a txt file if not save_url == "": with open(save_url, 'w') as file: for url in all_urls_final: file.write(url + '\n') return all_urls_final def order_doc_score_url(used_chunk, support_prob_per_chunk, urls, allow_duplicated_urls=False): """ Orders the documents, scores, and URLs based on the scores in descending order. allow_duplicated_urls: - If False, the function will return the highest scored chunk per doc + scores + urls. - If True, the function will return all the chunks per doc + scores + urls. """ # Flatten the used_chunk and support_prob_per_chunk lists flattened_docs = [doc for chunk in used_chunk for doc in chunk] flattened_scores = [score for chunk in support_prob_per_chunk for score in chunk] # Create a list of tuples containing the doc, score, and corresponding URL doc_score_url = list(zip(flattened_docs, flattened_scores, np.repeat(urls, [len(chunk) for chunk in used_chunk]))) # Sort the list based on the scores in descending order ranked_doc_score_url = sorted(doc_score_url, key=lambda x: x[1], reverse=True) # Unzip the sorted list to get the ranked docs, scores, and URLs ranked_docs, scores, ranked_urls = zip(*ranked_doc_score_url) if allow_duplicated_urls: return ranked_docs, scores, ranked_urls else: filtered_docs = [] filtered_scores = [] filtered_urls = [] seen_urls = set() for doc, score, url in zip(ranked_docs, scores, ranked_urls): if url not in seen_urls: filtered_docs.append(doc) filtered_scores.append(score) filtered_urls.append(url) seen_urls.add(url) # Update the variables with the filtered results ranked_docs = filtered_docs scores = filtered_scores ranked_urls = filtered_urls return ranked_docs, scores, ranked_urls