File size: 4,599 Bytes
0c16056 fe8ccbe 0c16056 a085643 0c16056 74c8919 0c16056 e9c9374 0c16056 cfa7c55 e9c9374 cfa7c55 0c16056 3dcb7a1 e9c9374 0c16056 87179c6 0c16056 e9c9374 0c16056 e9c9374 0c16056 e9c9374 0c16056 3dcb7a1 0c16056 e9c9374 0c16056 83992b1 0c16056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
---
language:
- en
pipeline_tag: text-classification
license: mit
---
# MiniCheck-RoBERTa-Large
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1s-5TYnGV3kGFMLp798r5N-FXPD8lt2dm?usp=sharing)
This is a fact-checking model from our work:
📃 [**MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents**](https://arxiv.org/pdf/2404.10774.pdf) (EMNLP 2024, [GitHub Repo](https://github.com/Liyan06/MiniCheck))
The model is based on RoBERTA-Large that predicts a binary label - 1 for supported and 0 for unsupported.
The model is doing predictions on the *sentence-level*. It takes as input a document and a sentence and determine
whether the sentence is supported by the document: **MiniCheck-Model(document, claim) -> {0, 1}**
MiniCheck-RoBERTa-Large is fine tuned from the trained RoBERTA-Large model from AlignScore ([Zha et al., 2023](https://aclanthology.org/2023.acl-long.634.pdf))
on 14K synthetic data generated from scratch in a structed way (more details in the paper).
### Model Variants
We also have other three MiniCheck model variants:
- [bespokelabs/Bespoke-Minicheck-7B](https://huggingface.co/bespokelabs/Bespoke-MiniCheck-7B) (Model Size: 7B)
- [lytang/MiniCheck-Flan-T5-Large](https://huggingface.co/lytang/MiniCheck-Flan-T5-Large) (Model Size: 0.8B)
- [lytang/MiniCheck-DeBERTa-v3-Large](https://huggingface.co/lytang/MiniCheck-DeBERTa-v3-Large) (Model Size: 0.4B)
### Model Performance
<p align="center">
<img src="./performance_focused.png" width="550">
</p>
The performance of these models is evaluated on our new collected benchmark (unseen by our models during training), [LLM-AggreFact](https://huggingface.co/datasets/lytang/LLM-AggreFact),
from 11 recent human annotated datasets on fact-checking and grounding LLM generations. MiniCheck-RoBERTa-Large outperform all
exisiting specialized fact-checkers with a similar scale by a large margin. See full results in our work.
Note: We only evaluated the performance of our models on real claims -- without any human intervention in
any format, such as injecting certain error types into model-generated claims. Those edited claims do not reflect
LLMs' actual behaviors.
# Model Usage Demo
Please run the following command to install the **MiniCheck package** and all necessary dependencies.
```sh
pip install "minicheck @ git+https://github.com/Liyan06/MiniCheck.git@main"
```
### Below is a simple use case
```python
from minicheck.minicheck import MiniCheck
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
doc = "A group of students gather in the school library to study for their upcoming final exams."
claim_1 = "The students are preparing for an examination."
claim_2 = "The students are on vacation."
# model_name can be one of ['roberta-large', 'deberta-v3-large', 'flan-t5-large', 'Bespoke-MiniCheck-7B']
scorer = MiniCheck(model_name='roberta-large', cache_dir='./ckpts')
pred_label, raw_prob, _, _ = scorer.score(docs=[doc, doc], claims=[claim_1, claim_2])
print(pred_label) # [1, 0]
print(raw_prob) # [0.9581979513168335, 0.031335990875959396]
```
### Test on our [LLM-AggreFact](https://huggingface.co/datasets/lytang/LLM-AggreFact) Benchmark
```python
import pandas as pd
from datasets import load_dataset
from minicheck.minicheck import MiniCheck
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# load 29K test data
df = pd.DataFrame(load_dataset("lytang/LLM-AggreFact")['test'])
docs = df.doc.values
claims = df.claim.values
scorer = MiniCheck(model_name='roberta-large', cache_dir='./ckpts')
pred_label, raw_prob, _, _ = scorer.score(docs=docs, claims=claims) # ~ 800 docs/min, depending on hardware
```
To evalaute the result on the benchmark
```python
from sklearn.metrics import balanced_accuracy_score
df['preds'] = pred_label
result_df = pd.DataFrame(columns=['Dataset', 'BAcc'])
for dataset in df.dataset.unique():
sub_df = df[df.dataset == dataset]
bacc = balanced_accuracy_score(sub_df.label, sub_df.preds) * 100
result_df.loc[len(result_df)] = [dataset, bacc]
result_df.loc[len(result_df)] = ['Average', result_df.BAcc.mean()]
result_df.round(1)
```
# Citation
```
@InProceedings{tang-etal-2024-minicheck,
title = {MiniCheck: Efficient Fact-Checking of LLMs on Grounding Documents},
author = {Liyan Tang and Philippe Laban and Greg Durrett},
booktitle = {Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing},
year = {2024},
publisher = {Association for Computational Linguistics},
url = {https://arxiv.org/pdf/2404.10774}
}
``` |