File size: 3,195 Bytes
4eaed6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6383e73
4eaed6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51f6e43
4eaed6f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: llama3
language:
- en
- ja
metrics:
- comet
pipeline_tag: translation
tags:
- machine translation
- MT
- llama-3
---

# Overview
This model is based on rinna's [rinna/llama-3-youko-8b], fine-tuned using LoRA on a small number of parallel sentences from English to Japanese. The model has a COMET (Unbabel/wmt22-comet-da) of 0.9011 and BLEU ("tok": "ja-mecab-0.996-IPA") of 33.1 on flores200 devtest.

* **Model architecture**

    A 32-layer, 4096-hidden-size transformer-based language model. Refer to the [Llama 3 Model Card](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for architecture details.
---

# How to use the model

~~~~python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

response_template = "\n###  日本語:\n"
prefix = "###  次の英語の文書を日本語に翻訳してください:\n"


def create_input(text, tokenizer):
    text = f"{prefix}{text}{response_template}"
    input_ids = tokenizer.encode(text, return_tensors="pt")
    return input_ids


model_id = "lyu-boxuan/llama-3-youko-8b-En-Ja-MT-LoRA"
model = AutoModelForCausalLM.from_pretrained(
    model_id, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2"
).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)

en = "LLMs Are Here but Not Quite There Yet"
input_ids = create_input(en, tokenizer).to(model.device)
outputs = model.generate(
    input_ids,
    max_new_tokens=256,
    num_beams=5,
    do_sample=False,
    early_stopping=True,
)
response = outputs[0][input_ids.shape[-1] :]
print(tokenizer.decode(response, skip_special_tokens=True))
~~~~

---

# Tokenization
The model uses the original meta-llama/Meta-Llama-3-8B tokenizer.


# References
```bibtex
@article{llama3modelcard,
    title={Llama 3 Model Card},
    author={AI@Meta},
    year={2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
@software{gpt-neox-library,
    title = {{GPT-NeoX: Large Scale Autoregressive Language Modeling in PyTorch}},
    author = {Andonian, Alex and Anthony, Quentin and Biderman, Stella and Black, Sid and Gali, Preetham and Gao, Leo and Hallahan, Eric and Levy-Kramer, Josh and Leahy, Connor and Nestler, Lucas and Parker, Kip and Pieler, Michael and Purohit, Shivanshu and Songz, Tri and Phil, Wang and Weinbach, Samuel},
    doi = {10.5281/zenodo.5879544},
    month = {8},
    year = {2021},
    version = {0.0.1},
    url = {https://www.github.com/eleutherai/gpt-neox},
}
@misc{rinna-llama-3-youko-8b, 
    title = {rinna/llama-3-youko-8b}, 
    author = {Mitsuda, Koh and Sawada, Kei},
    url = {https://huggingface.co/rinna/llama-3-youko-8b}, 
}
@inproceedings{sawada2024release,
    title = {Release of Pre-Trained Models for the {J}apanese Language},
    author = {Sawada, Kei and Zhao, Tianyu and Shing, Makoto and Mitsui, Kentaro and Kaga, Akio and Hono, Yukiya and Wakatsuki, Toshiaki and Mitsuda, Koh},
    booktitle = {Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
    month = {5},
    year = {2024},
    url = {https://arxiv.org/abs/2404.01657},
}
```
---

# License