m3hrdadfi commited on
Commit
492067e
1 Parent(s): 240e7ad

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -10
README.md CHANGED
@@ -14,22 +14,93 @@ license: apache-2.0
14
 
15
 
16
  ## How to use
17
- soon ...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
 
20
  ## Evaluation
21
  The following tables summarize the scores obtained by model overall and per each class.
22
 
23
 
24
- | Emotions | precision | recall | f1-score | accuracy |
25
- |:---------: |:---------: |:------: |:--------: |:--------: |
26
- | anger | 0.92 | 1.00 | 0.96 | - |
27
- | disgust | 0.85 | 0.96 | 0.90 | - |
28
- | fear | 0.88 | 0.88 | 0.88 | - |
29
- | happiness | 0.94 | 0.71 | 0.81 | - |
30
- | sadness | 0.96 | 1.00 | 0.98 | - |
31
- | - | - | - | - | 0.91 |
32
 
33
 
34
  ## Questions?
35
- Post a Github issue from [HERE](https://github.com/m3hrdadfi/wav2vec/issues).
 
14
 
15
 
16
  ## How to use
17
+
18
+ ### Requirements
19
+
20
+ ```bash
21
+ # requirement packages
22
+ !pip install git+https://github.com/huggingface/datasets.git
23
+ !pip install git+https://github.com/huggingface/transformers.git
24
+ !pip install torchaudio
25
+ !pip install librosa
26
+ ```
27
+
28
+ ### Prediction
29
+
30
+ ```python
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ import torchaudio
35
+ from transformers import AutoConfig, Wav2Vec2Processor
36
+
37
+ import librosa
38
+ import IPython.display as ipd
39
+ import numpy as np
40
+ import pandas as pd
41
+ ```
42
+
43
+ ```python
44
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
45
+ model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-greek-speech-emotion-recognition"
46
+ config = AutoConfig.from_pretrained(model_name_or_path)
47
+ processor = Wav2Vec2Processor.from_pretrained(model_name_or_path)
48
+ sampling_rate = processor.feature_extractor.sampling_rate
49
+ model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
50
+ ```
51
+
52
+ ```python
53
+ def speech_file_to_array_fn(path, sampling_rate):
54
+ speech_array, _sampling_rate = torchaudio.load(path)
55
+ resampler = torchaudio.transforms.Resample(_sampling_rate)
56
+ speech = resampler(speech_array).squeeze().numpy()
57
+ return speech
58
+
59
+
60
+ def predict(path, sampling_rate):
61
+ speech = speech_file_to_array_fn(path, sampling_rate)
62
+ features = processor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
63
+
64
+ input_values = features.input_values.to(device)
65
+ attention_mask = features.attention_mask.to(device)
66
+
67
+ with torch.no_grad():
68
+ logits = model(input_values, attention_mask=attention_mask).logits
69
+
70
+ scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
71
+ outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
72
+ return outputs
73
+ ```
74
+
75
+ ```python
76
+ path = "/path/to/audio.wav"
77
+ outputs = predict(path, sampling_rate)
78
+ ```
79
+
80
+ ```bash
81
+ [
82
+ {'Emotion': 'anger', 'Score': '0.0%'},
83
+ {'Emotion': 'disgust', 'Score': '99.2%'},
84
+ {'Emotion': 'fear', 'Score': '0.1%'},
85
+ {'Emotion': 'happiness', 'Score': '0.3%'},
86
+ {'Emotion': 'sadness', 'Score': '0.5%'}
87
+ ]
88
+ ```
89
 
90
 
91
  ## Evaluation
92
  The following tables summarize the scores obtained by model overall and per each class.
93
 
94
 
95
+ | Emotions | precision | recall | f1-score | accuracy |
96
+ |-----------|-----------|--------|----------|----------|
97
+ | anger | 0.92 | 1.00 | 0.96 | |
98
+ | disgust | 0.85 | 0.96 | 0.90 | |
99
+ | fear | 0.88 | 0.88 | 0.88 | |
100
+ | happiness | 0.94 | 0.71 | 0.81 | |
101
+ | sadness | 0.96 | 1.00 | 0.98 | |
102
+ | | | | Overal | 0.91 |
103
 
104
 
105
  ## Questions?
106
+ Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).