File size: 6,194 Bytes
8e3eaad f3f6964 8e3eaad cddfb98 f3f6964 8e3eaad cddfb98 8e3eaad 6dbbb82 8e3eaad 6dbbb82 8e3eaad 6592522 00350e2 6592522 8e3eaad 6b9c66b d2bd00f 6b9c66b 8e3eaad bc2bd4e 6dbbb82 bc2bd4e 8e3eaad 07de8a5 8e3eaad afddcfa f3f6964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- code
datasets:
- Intel/orca_dpo_pairs
model-index:
- name: Orca-SOLAR-4x10.7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 68.52
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 86.78
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 64.54
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 68.23
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/Orca-SOLAR-4x10.7b
name: Open LLM Leaderboard
---
# ππ Orca-SOLAR-4x10.7_36B
Merge of four Solar-10.7B instruct finetunes.
![solar](solar.png)
## π Usage
This SOLAR model _loves_ to code. In my experience, if you ask it a code question it will use almost all of the available token limit to complete the code.
However, this can also be to its own detriment. If the request is complex it may not finish the code in a given time period. This behavior is not because of an eos token, as it finishes sentences quite normally if its a non code question.
Your mileage may vary.
## π HF Spaces
This 36B parameter model is capabale of running on free tier hardware (CPU only - GGUF)
+ Try the model [here](https://huggingface.co/spaces/macadeliccc/Orca-SOLAR-4x10.7b-chat-GGUF)
## π
Code Example
Example also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/Orca-SOLAR-4x10.7b"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."
print("Response:")
print(generate_response(prompt), "\n")
```
## Llama.cpp
GGUF Quants available [here](https://huggingface.co/macadeliccc/Orca-SOLAR-4x10.7b-GGUF)
![llama.cpp-screenshot](orca-llama-cpp-1.png)
## Evaluations
https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b
### π Citations
```bibtex
@misc{kim2023solar,
title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling},
author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
year={2023},
eprint={2312.15166},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__Orca-SOLAR-4x10.7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |73.17|
|AI2 Reasoning Challenge (25-Shot)|68.52|
|HellaSwag (10-Shot) |86.78|
|MMLU (5-Shot) |67.03|
|TruthfulQA (0-shot) |64.54|
|Winogrande (5-shot) |83.90|
|GSM8k (5-shot) |68.23|
|