File size: 8,900 Bytes
9216df7
 
f916968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9216df7
1aa7540
c0bc5c8
 
 
f6358a5
c0bc5c8
e3a1ce4
 
 
54e26e6
1aa7540
cb5b591
 
c0bc5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1afb347
fd1ec67
1afb347
 
 
 
 
 
 
 
 
 
 
 
c0bc5c8
ad671c4
c0bc5c8
 
0851fe5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac685a1
c0bc5c8
 
 
 
 
 
 
 
 
 
 
 
f916968
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
---
license: cc-by-nc-4.0
model-index:
- name: SOLAR-math-2x10.7b-v0.2
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.9
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.29
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.25
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.68
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.5
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.9
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/SOLAR-math-2x10.7b-v0.2
      name: Open LLM Leaderboard
---
# πŸŒžπŸš€ SOLAR-math-10.7x2-v0.2_19B 

Merge of two Solar-10.7B instruct finetunes.

![solar](solar.png)

This model performs in line with GPT-3.5 and Gemini Pro. Exceeding all scores of Mixtral-8x7b

Here is a brief overview of the evaluation results. These are simply for the user to have the values available for comparison. This table does not represent a complete analysis.
![solar-math-table](solar-math-table.png)

![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/4JJTfJBZrSe_mX88ybutb.png)

## πŸŒ… Code Example

Example also available in [colab](https://colab.research.google.com/drive/10FWCLODU_EFclVOFOlxNYMmSiLilGMBZ?usp=sharing)

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

def generate_response(prompt):
    """
    Generate a response from the model based on the input prompt.

    Args:
    prompt (str): Prompt for the model.

    Returns:
    str: The generated response from the model.
    """
    # Tokenize the input prompt
    inputs = tokenizer(prompt, return_tensors="pt")
    
    # Generate output tokens
    outputs = model.generate(**inputs, max_new_tokens=512, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)

    # Decode the generated tokens to a string
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    return response


# Load the model and tokenizer
model_id = "macadeliccc/SOLAR-math-2x10.7B-v0.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

prompt = "Explain the proof of Fermat's Last Theorem and its implications in number theory."


print("Response:")
print(generate_response(prompt), "\n")
```
**Example output:**

Explain the proof of Fermat's Last Theorem and its implications in number theory.

  Fermat's Last Theorem, also known as FLT, is a famous mathematical conjecture that states "no three positive integers a, b, and c can satisfy the equation a^n + b^n = c^n for any integer value of n greater than 2." This theorem was first proposed by Pierre de Fermat in the 17th century, but its proof was only discovered in the late 20th century by Andrew Wiles.
  
  The proof of Fermat's Last Theorem, published by Andrew Wiles in 1993 and 1994, is complex and involves several advanced mathematical concepts. The main idea behind the proof is the use of modular elliptic curves, which are algebraic curves defined by polynomial equations. Wiles introduced a new concept called the Taniyama-Shimura conjecture, which states that there is a one-to-one correspondence between certain elliptic curves over the rational numbers and certain cusp forms.
  
  Wiles' proof of FLT is based on the assumption that the Taniyama-Shimura conjecture is true. He showed that if the Taniyama-Shimura conjecture is true, then Fermat's Last Theorem must also be true. This proof strategy is known as a "proof by contradiction." Wiles demonstrated that if FLT were false, then there would exist a counterexample to the Taniyama-Shimura conjecture. However, since the Taniyama-Shimura conjecture is believed to be true, this leads to a contradiction. Therefore, by the principle of contradiction, Fermat's Last Theorem must be true.
  
  The implications of Fermat's Last Theorem in number theory are significant. FLT is a fundamental result in the study of integers, and its proof has led to a better understanding of various mathematical concepts. The proof of FLT has also contributed to the development of other areas of mathematics, such as algebraic geometry, representation theory, and number theory itself.
  
  Moreover, the theorem has helped to strengthen the foundations of number theory by providing a resolution to a long-standing open problem. It has also encouraged mathematicians to explore new directions in research, as the proof of FLT has opened up new avenues for investigation in related fields.


## πŸ† Evaluations 


### ARC
|    Task     |Version|       Metric       |    Value    |   |Stderr|
|-------------|------:|--------------------|-------------|---|------|
|arc_challenge|      1|acc,none            |         0.68|   |      |
|             |       |acc_stderr,none     |         0.01|   |      |
|             |       |acc_norm,none       |         0.72|   |      |
|             |       |acc_norm_stderr,none|         0.01|   |      |
|             |       |alias               |arc_challenge|   |      |

Average: 71.76%

### HellaSwag
|  Task   |Version|       Metric       |  Value  |   |Stderr|
|---------|------:|--------------------|---------|---|------|
|hellaswag|      1|acc,none            |     0.71|   |      |
|         |       |acc_stderr,none     |        0|   |      |
|         |       |acc_norm,none       |     0.88|   |      |
|         |       |acc_norm_stderr,none|        0|   |      |
|         |       |alias               |hellaswag|   |      |

Average: 88.01%


### πŸ“š Citations 

```bibtex
@misc{kim2023solar,
      title={SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling}, 
      author={Dahyun Kim and Chanjun Park and Sanghoon Kim and Wonsung Lee and Wonho Song and Yunsu Kim and Hyeonwoo Kim and Yungi Kim and Hyeonju Lee and Jihoo Kim and Changbae Ahn and Seonghoon Yang and Sukyung Lee and Hyunbyung Park and Gyoungjin Gim and Mikyoung Cha and Hwalsuk Lee and Sunghun Kim},
      year={2023},
      eprint={2312.15166},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__SOLAR-math-2x10.7b-v0.2)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.25|
|AI2 Reasoning Challenge (25-Shot)|70.90|
|HellaSwag (10-Shot)              |88.29|
|MMLU (5-Shot)                    |66.25|
|TruthfulQA (0-shot)              |71.68|
|Winogrande (5-shot)              |83.50|
|GSM8k (5-shot)                   |64.90|