---
license: other
datasets:
- Thermostatic/flowers
- jondurbin/truthy-dpo-v0.1
- Intel/orca_dpo_pairs
- glaiveai/glaive-function-calling-v2
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
model-index:
- name: gemma-orchid-7b-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.88
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 80.95
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 61.41
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 53.27
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.51
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 50.19
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/gemma-orchid-7b-dpo
name: Open LLM Leaderboard
---
# Gemma Orchid 7b
![image/webp](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/7pqiroePJW0WWm6JxwBoO.webp)
[
](https://github.com/OpenAccess-AI-Collective/axolotl)
This model is the second checkpoint of a future project. Its capable of function calling as well as having a strong base in communicational skills.
This model has been finetuned on roughly 80k samples so far.
# Training
+ Time to complete: ~20 hours
+ Datasets: Thermostatic/flowers, Intel/orca_dpo_pairs, jondurbin/truthy-dpo-v0.1, glaiveai/glaive_function_calling_v2
+ Evaluation loss: 0.69
+ Method: LoRa
+ Prompt Format: ChatML
Thermostatic/flowers is a blend of open source model generations formatted in ShareGPT. It also includes all of capybara.
This model has been exposed to a wide variety of data. [macadeliccc/gemma-function-calling-7b](https://huggingface.co/macadeliccc/gemma-function-calling-7b) is suitable to finetune further with the dataset of your choosing.
#### Running the model on a CPU
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a single / multi GPU
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto")
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Running the model on a GPU using different precisions
* _Using `torch.float16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.float16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using `torch.bfloat16`_
```python
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", device_map="auto", torch_dtype=torch.bfloat16)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Quantized Versions through `bitsandbytes`
* _Using 8-bit precision (int8)_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
* _Using 4-bit precision_
```python
# pip install bitsandbytes accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained("macadeliccc/gemma-orchid-7b-dpo")
model = AutoModelForCausalLM.from_pretrained("macadeliccc/gemma-orchid-7b-dpo", quantization_config=quantization_config)
input_text = "Write me a poem about Machine Learning."
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
```
#### Other optimizations
* _Flash Attention 2_
First make sure to install `flash-attn` in your environment `pip install flash-attn`
```diff
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
+ attn_implementation="flash_attention_2"
).to(0)
```
### Inputs and outputs
* **Input:** Text string, such as a question, a prompt, or a document to be
summarized.
* **Output:** Generated English-language text in response to the input, such
as an answer to a question, or a summary of a document.
## Evaluations
In progress
## ExLlamaV2
Available [here](https://huggingface.co/bartowski/gemma-orchid-7b-dpo-exl2)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__gemma-orchid-7b-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |64.37|
|AI2 Reasoning Challenge (25-Shot)|62.88|
|HellaSwag (10-Shot) |80.95|
|MMLU (5-Shot) |61.41|
|TruthfulQA (0-shot) |53.27|
|Winogrande (5-shot) |77.51|
|GSM8k (5-shot) |50.19|