maddes8cht commited on
Commit
bad26bb
·
1 Parent(s): d260dd5

"Update README.md"

Browse files
Files changed (1) hide show
  1. README.md +287 -0
README.md ADDED
@@ -0,0 +1,287 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - gpt
7
+ - llm
8
+ - large language model
9
+ - h2o-llmstudio
10
+ inference: false
11
+ thumbnail: >-
12
+ https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
13
+ license: apache-2.0
14
+ datasets:
15
+ - OpenAssistant/oasst1
16
+ ---
17
+ [![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()
18
+
19
+ I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
20
+
21
+ # h2ogpt-gm-oasst1-multilang-2048-falcon-7b - GGUF
22
+ - Model creator: [h2oai](https://huggingface.co/h2oai)
23
+ - Original model: [h2ogpt-gm-oasst1-multilang-2048-falcon-7b](https://huggingface.co/h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b)
24
+
25
+ # K-Quants in Falcon 7b models
26
+
27
+ New releases of Llama.cpp now support K-quantization for previously incompatible models, in particular all Falcon 7B models. This is achieved by employing a fallback solution for model layers that cannot be quantized with real K-quants.
28
+
29
+ For Falcon 7B models, although only a quarter of the layers can be quantized with true K-quants, this approach still benefits from utilizing *different* legacy quantization types Q4_0, Q4_1, Q5_0, and Q5_1. As a result, it offers better quality at the same file size or smaller file sizes with comparable performance.
30
+
31
+ So this solution ensures improved performance and efficiency over legacy Q4_0, Q4_1, Q5_0 and Q5_1 Quantizations.
32
+
33
+
34
+ # Important Update for Falcon Models in llama.cpp Versions After October 18, 2023
35
+
36
+ As previously noted on the [Llama.cpp GitHub repository](https://github.com/ggerganov/llama.cpp#hot-topics), all new Llama.cpp releases after October 18, 2023, required re-quantization due to the implementation of the new BPE tokenizer.
37
+
38
+ This re-quantization process for Falcon Models is now complete, the latest quantized models are available here for download. To ensure continued compatibility with recent llama.cpp software, You need to update your Falcon models.
39
+
40
+ - **Stay Informed:** Keep an eye on software application release schedules using llama.cpp libraries.
41
+ - **Monitor Upload Times:** Re-quantization is complete. Watch for updates on my Hugging Face Model pages.
42
+
43
+ This change only affects **Falcon** and **Starcoder** models, with other models remaining unaffected.
44
+
45
+
46
+
47
+
48
+ # About GGUF format
49
+
50
+ `gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
51
+ A growing list of Software is using it and can therefore use this model.
52
+ The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
53
+
54
+ # Quantization variants
55
+
56
+ There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
57
+
58
+ # Legacy quants
59
+
60
+ Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
61
+ Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
62
+ ## Note:
63
+ Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
64
+ (This mainly refers to Falcon 7b and Starcoder models)
65
+
66
+ # K-quants
67
+
68
+ K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
69
+ So, if possible, use K-quants.
70
+ With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
71
+
72
+
73
+
74
+
75
+ ---
76
+
77
+ # Original Model Card:
78
+ # Model Card
79
+ ## Summary
80
+
81
+ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
82
+ - Base model: [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b)
83
+ - Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28)
84
+
85
+
86
+ ## Usage
87
+
88
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate`, `torch` and `einops` libraries installed.
89
+
90
+ ```bash
91
+ pip install transformers==4.29.2
92
+ pip install accelerate==0.19.0
93
+ pip install torch==2.0.0
94
+ pip install einops==0.6.1
95
+ ```
96
+
97
+ ```python
98
+ import torch
99
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
100
+
101
+
102
+ tokenizer = AutoTokenizer.from_pretrained(
103
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
104
+ use_fast=False,
105
+ padding_side="left",
106
+ trust_remote_code=True,
107
+ )
108
+
109
+ generate_text = pipeline(
110
+ model="h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
111
+ tokenizer=tokenizer,
112
+ torch_dtype=torch.float16,
113
+ trust_remote_code=True,
114
+ use_fast=False,
115
+ device_map={"": "cuda:0"},
116
+ )
117
+
118
+ res = generate_text(
119
+ "Why is drinking water so healthy?",
120
+ min_new_tokens=2,
121
+ max_new_tokens=1024,
122
+ do_sample=False,
123
+ num_beams=1,
124
+ temperature=float(0.3),
125
+ repetition_penalty=float(1.2),
126
+ renormalize_logits=True
127
+ )
128
+ print(res[0]["generated_text"])
129
+ ```
130
+
131
+ You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
132
+
133
+ ```python
134
+ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
135
+ ```
136
+
137
+ ```bash
138
+ <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
139
+ ```
140
+
141
+ Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
142
+
143
+
144
+ ```python
145
+ import torch
146
+ from h2oai_pipeline import H2OTextGenerationPipeline
147
+ from transformers import AutoModelForCausalLM, AutoTokenizer
148
+
149
+ tokenizer = AutoTokenizer.from_pretrained(
150
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
151
+ use_fast=False,
152
+ padding_side="left",
153
+ trust_remote_code=True,
154
+ )
155
+ model = AutoModelForCausalLM.from_pretrained(
156
+ "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b",
157
+ torch_dtype=torch.bfloat16,
158
+ device_map={"": "cuda:0"},
159
+ trust_remote_code=True,
160
+ )
161
+ generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
162
+
163
+ res = generate_text(
164
+ "Why is drinking water so healthy?",
165
+ min_new_tokens=2,
166
+ max_new_tokens=1024,
167
+ do_sample=False,
168
+ num_beams=1,
169
+ temperature=float(0.3),
170
+ repetition_penalty=float(1.2),
171
+ renormalize_logits=True
172
+ )
173
+ print(res[0]["generated_text"])
174
+ ```
175
+
176
+ You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
177
+
178
+ ```python
179
+ from transformers import AutoModelForCausalLM, AutoTokenizer
180
+
181
+ model_name = "h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b" # either local folder or huggingface model name
182
+ # Important: The prompt needs to be in the same format the model was trained with.
183
+ # You can find an example prompt in the experiment logs.
184
+ prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
185
+
186
+ tokenizer = AutoTokenizer.from_pretrained(
187
+ model_name,
188
+ use_fast=False,
189
+ trust_remote_code=True,
190
+ )
191
+ model = AutoModelForCausalLM.from_pretrained(
192
+ model_name,
193
+ torch_dtype=torch.bfloat16,
194
+ device_map={"": "cuda:0"},
195
+ trust_remote_code=True,
196
+ )
197
+ model.cuda().eval()
198
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
199
+
200
+ # generate configuration can be modified to your needs
201
+ tokens = model.generate(
202
+ **inputs,
203
+ min_new_tokens=2,
204
+ max_new_tokens=1024,
205
+ do_sample=False,
206
+ num_beams=1,
207
+ temperature=float(0.3),
208
+ repetition_penalty=float(1.2),
209
+ renormalize_logits=True
210
+ )[0]
211
+
212
+ tokens = tokens[inputs["input_ids"].shape[1]:]
213
+ answer = tokenizer.decode(tokens, skip_special_tokens=True)
214
+ print(answer)
215
+ ```
216
+
217
+ ## Model Architecture
218
+
219
+ ```
220
+ RWForCausalLM(
221
+ (transformer): RWModel(
222
+ (word_embeddings): Embedding(65024, 4544)
223
+ (h): ModuleList(
224
+ (0-31): 32 x DecoderLayer(
225
+ (input_layernorm): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
226
+ (self_attention): Attention(
227
+ (maybe_rotary): RotaryEmbedding()
228
+ (query_key_value): Linear(in_features=4544, out_features=4672, bias=False)
229
+ (dense): Linear(in_features=4544, out_features=4544, bias=False)
230
+ (attention_dropout): Dropout(p=0.0, inplace=False)
231
+ )
232
+ (mlp): MLP(
233
+ (dense_h_to_4h): Linear(in_features=4544, out_features=18176, bias=False)
234
+ (act): GELU(approximate='none')
235
+ (dense_4h_to_h): Linear(in_features=18176, out_features=4544, bias=False)
236
+ )
237
+ )
238
+ )
239
+ (ln_f): LayerNorm((4544,), eps=1e-05, elementwise_affine=True)
240
+ )
241
+ (lm_head): Linear(in_features=4544, out_features=65024, bias=False)
242
+ )
243
+ ```
244
+
245
+ ## Model Configuration
246
+
247
+ This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
248
+
249
+
250
+ ## Model Validation
251
+
252
+ Model validation results using [EleutherAI lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness).
253
+
254
+ ```bash
255
+ CUDA_VISIBLE_DEVICES=0 python main.py --model hf-causal-experimental --model_args pretrained=h2oai/h2ogpt-gm-oasst1-multilang-2048-falcon-7b --tasks openbookqa,arc_easy,winogrande,hellaswag,arc_challenge,piqa,boolq --device cuda &> eval.log
256
+ ```
257
+
258
+
259
+ ## Disclaimer
260
+
261
+ Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
262
+
263
+ - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
264
+ - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
265
+ - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
266
+ - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
267
+ - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
268
+ - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
269
+
270
+ By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
271
+
272
+ ***End of original Model File***
273
+ ---
274
+
275
+
276
+ ## Please consider to support my work
277
+ **Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
278
+
279
+ <center>
280
+
281
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
282
+ [![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
283
+ [![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
284
+ [![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
285
+ [![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)
286
+
287
+ </center>