wanadzhar913 commited on
Commit
f7ba7e4
1 Parent(s): 0d2e525

Upload MistralForSequenceClassification

Browse files
Files changed (4) hide show
  1. README.md +199 -0
  2. classifier.py +88 -0
  3. config.json +32 -0
  4. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
classifier.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from bidirectional_mistral import MistralBiModel
2
+ from transformers import MistralPreTrainedModel
3
+ import torch
4
+ import numpy as np
5
+ from typing import Optional, List
6
+ from torch import nn
7
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
8
+ from transformers.modeling_outputs import SequenceClassifierOutputWithPast
9
+
10
+
11
+ class MistralForSequenceClassification(MistralPreTrainedModel):
12
+ def __init__(self, config):
13
+ super().__init__(config)
14
+ self.num_labels = config.num_labels
15
+ self.model = MistralBiModel(config)
16
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
17
+
18
+ # Initialize weights and apply final processing
19
+ self.post_init()
20
+
21
+ def forward(
22
+ self,
23
+ input_ids: torch.LongTensor = None,
24
+ attention_mask: Optional[torch.Tensor] = None,
25
+ position_ids: Optional[torch.LongTensor] = None,
26
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
27
+ inputs_embeds: Optional[torch.FloatTensor] = None,
28
+ labels: Optional[torch.LongTensor] = None,
29
+ use_cache: Optional[bool] = None,
30
+ output_attentions: Optional[bool] = None,
31
+ output_hidden_states: Optional[bool] = None,
32
+ return_dict: Optional[bool] = None,
33
+ ):
34
+ r"""
35
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
36
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
37
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
38
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
39
+ """
40
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
41
+
42
+ transformer_outputs = self.model(
43
+ input_ids,
44
+ attention_mask=attention_mask,
45
+ position_ids=position_ids,
46
+ past_key_values=past_key_values,
47
+ inputs_embeds=inputs_embeds,
48
+ use_cache=use_cache,
49
+ output_attentions=output_attentions,
50
+ output_hidden_states=output_hidden_states,
51
+ return_dict=return_dict,
52
+ )
53
+ pooled_output = transformer_outputs[0][:, 0]
54
+ logits = self.score(pooled_output)
55
+
56
+ loss = None
57
+ if labels is not None:
58
+ if self.config.problem_type is None:
59
+ if self.num_labels == 1:
60
+ self.config.problem_type = "regression"
61
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
62
+ self.config.problem_type = "single_label_classification"
63
+ else:
64
+ self.config.problem_type = "multi_label_classification"
65
+
66
+ if self.config.problem_type == "regression":
67
+ loss_fct = MSELoss()
68
+ if self.num_labels == 1:
69
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
70
+ else:
71
+ loss = loss_fct(logits, labels)
72
+ elif self.config.problem_type == "single_label_classification":
73
+ loss_fct = CrossEntropyLoss()
74
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
75
+ elif self.config.problem_type == "multi_label_classification":
76
+ loss_fct = BCEWithLogitsLoss()
77
+ loss = loss_fct(logits, labels)
78
+ if not return_dict:
79
+ output = (logits,) + transformer_outputs[2:]
80
+ return ((loss,) + output) if loss is not None else output
81
+
82
+ return SequenceClassifierOutputWithPast(
83
+ loss=loss,
84
+ logits=logits,
85
+ past_key_values=transformer_outputs.past_key_values,
86
+ hidden_states=transformer_outputs.hidden_states,
87
+ attentions=transformer_outputs.attentions,
88
+ )
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "reranker-malaysian-mistral-191M/checkpoint-27200",
3
+ "architectures": [
4
+ "MistralForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoModel": "classifier.MistralForSequenceClassification"
9
+ },
10
+ "bos_token_id": 1,
11
+ "eos_token_id": 2,
12
+ "head_dim": 48,
13
+ "hidden_act": "silu",
14
+ "hidden_size": 768,
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "max_position_embeddings": 4096,
18
+ "model_type": "mistral",
19
+ "num_attention_heads": 16,
20
+ "num_hidden_layers": 16,
21
+ "num_key_value_heads": 8,
22
+ "pad_token_id": 0,
23
+ "problem_type": "single_label_classification",
24
+ "rms_norm_eps": 1e-05,
25
+ "rope_theta": 10000.0,
26
+ "sliding_window": 4096,
27
+ "tie_word_embeddings": false,
28
+ "torch_dtype": "float32",
29
+ "transformers_version": "4.44.2",
30
+ "use_cache": true,
31
+ "vocab_size": 32000
32
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1b1fa49d61d8c411173d7eb130b0fd4d9baa56e9945d69014d11ff07906f52c8
3
+ size 664658904