manasvinid commited on
Commit
b022a6a
1 Parent(s): fc95bc9

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -0
README.md ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: Sentiment-Analysis-on-Twitter-BCS
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # Sentiment-Analysis-on-Twitter-BCS
19
+
20
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.1303
23
+ - Accuracy: 0.9615
24
+ - Precision: 0.7730
25
+ - Recall: 0.6384
26
+ - F1: 0.6993
27
+ - Roc Auc: 0.9701
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 16
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 4
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
58
+ | 0.211 | 1.0 | 1798 | 0.1622 | 0.9515 | 0.6769 | 0.5893 | 0.6301 | 0.9417 |
59
+ | 0.1369 | 2.0 | 3596 | 0.1568 | 0.9568 | 0.7009 | 0.6696 | 0.6849 | 0.9646 |
60
+ | 0.1118 | 3.0 | 5394 | 0.1303 | 0.9615 | 0.7730 | 0.6384 | 0.6993 | 0.9701 |
61
+ | 0.0887 | 4.0 | 7192 | 0.1532 | 0.9631 | 0.8011 | 0.6295 | 0.7050 | 0.9708 |
62
+
63
+
64
+ ### Framework versions
65
+
66
+ - Transformers 4.30.2
67
+ - Pytorch 2.0.1+cu118
68
+ - Datasets 2.13.0
69
+ - Tokenizers 0.13.3