--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: finetuned-vit-flowers results: [] --- # finetuned-vit-flowers This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1365 - Accuracy: 0.9653 ## Model description Entrenamiento apoyado de: https://github.com/huggingface/notebooks/blob/main/examples/image_classification.ipynb ## Intended uses & limitations Proyecto final ## Training and evaluation data https://huggingface.co/datasets/DeadPixels/DPhi_Sprint_25_Flowers ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.1236 | 0.99 | 36 | 0.1509 | 0.9730 | | 0.1043 | 2.0 | 73 | 0.1235 | 0.9730 | | 0.1077 | 2.96 | 108 | 0.1365 | 0.9653 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0