Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- fr
|
4 |
+
tags:
|
5 |
+
- token-classification
|
6 |
+
- fill-mask
|
7 |
+
license: mit
|
8 |
+
datasets:
|
9 |
+
- iit-cdip
|
10 |
+
---
|
11 |
+
|
12 |
+
|
13 |
+
This model is the combined camembert-base model, with the pretrained lilt checkpoint from the paper "LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding".
|
14 |
+
|
15 |
+
Original repository: https://github.com/jpWang/LiLT
|
16 |
+
|
17 |
+
To use it, it is necessary to fork the modeling and configuration files from the original repository, and load the pretrained model from the corresponding classes (LiLTRobertaLikeConfig, LiLTRobertaLikeForRelationExtraction, LiLTRobertaLikeForTokenClassification, LiLTRobertaLikeModel).
|
18 |
+
They can also be preloaded with the AutoConfig/model factories as such:
|
19 |
+
|
20 |
+
```python
|
21 |
+
from transformers import AutoModelForTokenClassification, AutoConfig
|
22 |
+
|
23 |
+
from path_to_custom_classes import (
|
24 |
+
LiLTRobertaLikeConfig,
|
25 |
+
LiLTRobertaLikeForRelationExtraction,
|
26 |
+
LiLTRobertaLikeForTokenClassification,
|
27 |
+
LiLTRobertaLikeModel
|
28 |
+
)
|
29 |
+
|
30 |
+
|
31 |
+
def patch_transformers():
|
32 |
+
AutoConfig.register("liltrobertalike", LiLTRobertaLikeConfig)
|
33 |
+
AutoModel.register(LiLTRobertaLikeConfig, LiLTRobertaLikeModel)
|
34 |
+
AutoModelForTokenClassification.register(LiLTRobertaLikeConfig, LiLTRobertaLikeForTokenClassification)
|
35 |
+
# etc...
|
36 |
+
```
|
37 |
+
|
38 |
+
To load the model, it is then possible to use:
|
39 |
+
```python
|
40 |
+
# patch_transformers() must have been executed beforehand
|
41 |
+
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(self.tokenizer_name, use_auth_token=self.use_auth_token)
|
43 |
+
model = AutoModel.from_pretrained("manu/lilt-camembert-base")
|
44 |
+
model = AutoModelForTokenClassification.from_pretrained("manu/lilt-camembert-base") # to be fine-tuned on a token classification task
|
45 |
+
```
|