--- base_model: microsoft/mpnet-base datasets: - sentence-transformers/all-nli language: - en library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10000 - loss:MultipleNegativesRankingLoss widget: - source_sentence: A man dressed in yellow rescue gear walks in a field. sentences: - A person messes with some papers. - The man is outdoors. - The man is bowling. - source_sentence: A young woman tennis player dressed in black carries many tennis balls on her racket. sentences: - A young woman tennis player have many tennis balls. - Two men are fishing. - A young woman never wears white dress. - source_sentence: An older gentleman enjoys a scenic stroll through the countryside. sentences: - A pirate boards the spaceship. - A man walks the countryside. - Girls standing at a whiteboard in front of class. - source_sentence: A kid in a red and black coat is laying on his back in the snow with his arm in the air and a red sled is next to him. sentences: - It is a cold day. - A girl with her hands in a tub. - The kid is on a sugar high. - source_sentence: A young boy playing in the grass. sentences: - A woman in a restaurant. - The boy is in the sand. - There is a child in the grass. model-index: - name: SentenceTransformer based on microsoft/mpnet-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts dev type: sts-dev metrics: - type: pearson_cosine value: 0.8037115824193053 name: Pearson Cosine - type: spearman_cosine value: 0.8280034834882098 name: Spearman Cosine - type: pearson_manhattan value: 0.8246115594820148 name: Pearson Manhattan - type: spearman_manhattan value: 0.8246698532463935 name: Spearman Manhattan - type: pearson_euclidean value: 0.8269079166689298 name: Pearson Euclidean - type: spearman_euclidean value: 0.8265033797728895 name: Spearman Euclidean - type: pearson_dot value: 0.7864251532602605 name: Pearson Dot - type: spearman_dot value: 0.7996406955949785 name: Spearman Dot - type: pearson_max value: 0.8269079166689298 name: Pearson Max - type: spearman_max value: 0.8280034834882098 name: Spearman Max - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.7555884394670088 name: Pearson Cosine - type: spearman_cosine value: 0.7629008268135758 name: Spearman Cosine - type: pearson_manhattan value: 0.7748676335047628 name: Pearson Manhattan - type: spearman_manhattan value: 0.7596079881029025 name: Spearman Manhattan - type: pearson_euclidean value: 0.7763712683425394 name: Pearson Euclidean - type: spearman_euclidean value: 0.7608569856209585 name: Spearman Euclidean - type: pearson_dot value: 0.735478302248904 name: Pearson Dot - type: spearman_dot value: 0.729962390312057 name: Spearman Dot - type: pearson_max value: 0.7763712683425394 name: Pearson Max - type: spearman_max value: 0.7629008268135758 name: Spearman Max --- # SentenceTransformer based on microsoft/mpnet-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("manuel-couto-pintos/mpnet-base-nli-v2") # Run inference sentences = [ 'A young boy playing in the grass.', 'There is a child in the grass.', 'The boy is in the sand.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:----------| | pearson_cosine | 0.8037 | | **spearman_cosine** | **0.828** | | pearson_manhattan | 0.8246 | | spearman_manhattan | 0.8247 | | pearson_euclidean | 0.8269 | | spearman_euclidean | 0.8265 | | pearson_dot | 0.7864 | | spearman_dot | 0.7996 | | pearson_max | 0.8269 | | spearman_max | 0.828 | #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.7556 | | **spearman_cosine** | **0.7629** | | pearson_manhattan | 0.7749 | | spearman_manhattan | 0.7596 | | pearson_euclidean | 0.7764 | | spearman_euclidean | 0.7609 | | pearson_dot | 0.7355 | | spearman_dot | 0.73 | | pearson_max | 0.7764 | | spearman_max | 0.7629 | ## Training Details ### Training Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) * Size: 10,000 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### sentence-transformers/all-nli * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) * Size: 1,000 evaluation samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------| | Two women are embracing while holding to go packages. | Two woman are holding packages. | The men are fighting outside a deli. | | Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink. | Two kids in numbered jerseys wash their hands. | Two kids in jackets walk to school. | | A man selling donuts to a customer during a world exhibition event held in the city of Angeles | A man selling donuts to a customer. | A woman drinks her coffee in a small cafe. | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |:------:|:----:|:------:|:-----------------------:|:------------------------:| | 0 | 0 | - | 0.6320 | - | | 0.1266 | 10 | 3.9540 | 0.7586 | - | | 0.2532 | 20 | 1.4977 | 0.8334 | - | | 0.3797 | 30 | 1.3551 | 0.8398 | - | | 0.5063 | 40 | 1.5181 | 0.8434 | - | | 0.6329 | 50 | 1.4927 | 0.8335 | - | | 0.7595 | 60 | 1.5868 | 0.8287 | - | | 0.8861 | 70 | 1.5348 | 0.8280 | - | | 1.0 | 79 | - | - | 0.7629 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.0.1 - Transformers: 4.42.1 - PyTorch: 2.0.1+cu117 - Accelerate: 0.34.0 - Datasets: 2.15.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```