marcel commited on
Commit
2c3d76b
1 Parent(s): f966eb6

fixed README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -14
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  language: de
3
  datasets:
4
- - common_voice (trained on 3%)
5
  - wer
6
  tags:
7
  - audio
@@ -58,7 +58,7 @@ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
- \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
@@ -88,31 +88,31 @@ model = Wav2Vec2ForCTC.from_pretrained("de")
88
  `elgeish/wav2vec2-large-xlsr-53-arabic`
89
  model.to("cuda")
90
 
91
- chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
- \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
- \\tbatch["sentence"] = re.sub('\\\\ß', 'ss', batch["sentence"])
99
- \\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
100
- \\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
101
- \\treturn batch
102
 
103
  test_dataset = test_dataset.map(speech_file_to_array_fn)
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
107
  def evaluate(batch):
108
- \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
 
110
- \\twith torch.no_grad():
111
- \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
 
113
- \\tpred_ids = torch.argmax(logits, dim=-1)
114
- \\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
115
- \\treturn batch
116
 
117
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
 
 
1
  ---
2
  language: de
3
  datasets:
4
+ - common_voice
5
  - wer
6
  tags:
7
  - audio
 
58
  inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
 
60
  with torch.no_grad():
61
+ \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
 
63
  predicted_ids = torch.argmax(logits, dim=-1)
64
 
 
88
  `elgeish/wav2vec2-large-xlsr-53-arabic`
89
  model.to("cuda")
90
 
91
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
92
  resampler = torchaudio.transforms.Resample(48_000, 16_000)
93
 
94
  # Preprocessing the datasets.
95
  # We need to read the aduio files as arrays
96
  def speech_file_to_array_fn(batch):
97
+ \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
98
+ \tbatch["sentence"] = re.sub('', 'ss', batch["sentence"])
99
+ \tspeech_array, sampling_rate = torchaudio.load(batch["path"])
100
+ \tbatch["speech"] = resampler(speech_array).squeeze().numpy()
101
+ \treturn batch
102
 
103
  test_dataset = test_dataset.map(speech_file_to_array_fn)
104
 
105
  # Preprocessing the datasets.
106
  # We need to read the aduio files as arrays
107
  def evaluate(batch):
108
+ \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
 
110
+ \twith torch.no_grad():
111
+ \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
 
113
+ \tpred_ids = torch.argmax(logits, dim=-1)
114
+ \tbatch["pred_strings"] = processor.batch_decode(pred_ids)
115
+ \treturn batch
116
 
117
  result = test_dataset.map(evaluate, batched=True, batch_size=8)
118