fixed README.md
Browse files
README.md
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
---
|
2 |
language: de
|
3 |
datasets:
|
4 |
-
- common_voice
|
5 |
- wer
|
6 |
tags:
|
7 |
- audio
|
@@ -58,7 +58,7 @@ test_dataset = test_dataset.map(speech_file_to_array_fn)
|
|
58 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
|
60 |
with torch.no_grad():
|
61 |
-
|
62 |
|
63 |
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
|
@@ -88,31 +88,31 @@ model = Wav2Vec2ForCTC.from_pretrained("de")
|
|
88 |
`elgeish/wav2vec2-large-xlsr-53-arabic`
|
89 |
model.to("cuda")
|
90 |
|
91 |
-
chars_to_ignore_regex = '[
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
104 |
|
105 |
# Preprocessing the datasets.
|
106 |
# We need to read the aduio files as arrays
|
107 |
def evaluate(batch):
|
108 |
-
|
109 |
|
110 |
-
|
111 |
-
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
|
117 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
118 |
|
|
|
1 |
---
|
2 |
language: de
|
3 |
datasets:
|
4 |
+
- common_voice
|
5 |
- wer
|
6 |
tags:
|
7 |
- audio
|
|
|
58 |
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
59 |
|
60 |
with torch.no_grad():
|
61 |
+
\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
62 |
|
63 |
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
|
|
|
88 |
`elgeish/wav2vec2-large-xlsr-53-arabic`
|
89 |
model.to("cuda")
|
90 |
|
91 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\�\カ\æ\無\ན\カ\臣\ѹ\…\«\»\ð\ı\„\幺\א\ב\比\ш\ע\)\ứ\в\œ\ч\+\—\ш\‚\נ\м\ń\乡\$\=\ש\ф\支\(\°\и\к\̇]'
|
92 |
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
93 |
|
94 |
# Preprocessing the datasets.
|
95 |
# We need to read the aduio files as arrays
|
96 |
def speech_file_to_array_fn(batch):
|
97 |
+
\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
98 |
+
\tbatch["sentence"] = re.sub('\ß', 'ss', batch["sentence"])
|
99 |
+
\tspeech_array, sampling_rate = torchaudio.load(batch["path"])
|
100 |
+
\tbatch["speech"] = resampler(speech_array).squeeze().numpy()
|
101 |
+
\treturn batch
|
102 |
|
103 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
104 |
|
105 |
# Preprocessing the datasets.
|
106 |
# We need to read the aduio files as arrays
|
107 |
def evaluate(batch):
|
108 |
+
\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
109 |
|
110 |
+
\twith torch.no_grad():
|
111 |
+
\t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
112 |
|
113 |
+
\tpred_ids = torch.argmax(logits, dim=-1)
|
114 |
+
\tbatch["pred_strings"] = processor.batch_decode(pred_ids)
|
115 |
+
\treturn batch
|
116 |
|
117 |
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
118 |
|