marcel commited on
Commit
586e833
1 Parent(s): bad48ce

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +121 -1
README.md CHANGED
@@ -1,6 +1,126 @@
1
  ---
 
 
 
 
2
  tags:
 
 
 
3
  - xlsr-fine-tuning-week
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Wav2Vec2-Large-XLSR-53-German
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language: de
3
+ datasets:
4
+ - common_voice (trained on 3%)
5
+ - wer
6
  tags:
7
+ - audio
8
+ - automatic-speech-recognition
9
+ - speech
10
  - xlsr-fine-tuning-week
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: XLSR Wav2Vec2 Large 53
14
+ results:
15
+ - task:
16
+ name: Speech Recognition
17
+ type: automatic-speech-recognition
18
+ dataset:
19
+ name: Common Voice de
20
+ type: common_voice
21
+ args: de #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
22
+ metrics:
23
+ - name: Test WER
24
+ type: wer
25
+ value: {wer_result_on_test} #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value
26
  ---
27
 
28
+ # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, *e.g.* French
29
+
30
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on German using 3% of the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. #TODO: replace {language} with your language, *e.g.* French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice
31
+ When using this model, make sure that your speech input is sampled at 16kHz.
32
+
33
+ ## Usage
34
+
35
+ The model can be used directly (without a language model) as follows:
36
+
37
+ ```python
38
+ import torch
39
+ import torchaudio
40
+ from datasets import load_dataset
41
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
42
+
43
+ test_dataset = load_dataset("common_voice", "de", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
44
+
45
+ processor = Wav2Vec2Processor.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
46
+ model = Wav2Vec2ForCTC.from_pretrained("marcel/wav2vec2-large-xlsr-german-demo/") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
47
+
48
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
49
+
50
+ # Preprocessing the datasets.
51
+ # We need to read the aduio files as arrays
52
+ def speech_file_to_array_fn(batch):
53
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
54
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
55
+ return batch
56
+
57
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
58
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
59
+
60
+ with torch.no_grad():
61
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
62
+
63
+ predicted_ids = torch.argmax(logits, dim=-1)
64
+
65
+ print("Prediction:", processor.batch_decode(predicted_ids))
66
+ print("Reference:", test_dataset["sentence"][:2])
67
+ ```
68
+
69
+
70
+ ## Evaluation
71
+
72
+ The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French
73
+
74
+
75
+ ```python
76
+ import torch
77
+ import torchaudio
78
+ from datasets import load_dataset, load_metric
79
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
80
+ import re
81
+
82
+ test_dataset = load_dataset("common_voice", "de", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site.
83
+ wer = load_metric("wer")
84
+
85
+ processor = Wav2Vec2Processor.from_pretrained("de") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
86
+ model = Wav2Vec2ForCTC.from_pretrained("de") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic`
87
+ model.to("cuda")
88
+
89
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data
90
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
91
+
92
+ # Preprocessing the datasets.
93
+ # We need to read the aduio files as arrays
94
+ def speech_file_to_array_fn(batch):
95
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
96
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
97
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
98
+ return batch
99
+
100
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
101
+
102
+ # Preprocessing the datasets.
103
+ # We need to read the aduio files as arrays
104
+ def evaluate(batch):
105
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
106
+
107
+ with torch.no_grad():
108
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
109
+
110
+ pred_ids = torch.argmax(logits, dim=-1)
111
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
112
+ return batch
113
+
114
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
115
+
116
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
117
+ ```
118
+
119
+ **Test Result**: XX.XX % # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags.
120
+
121
+
122
+ ## Training
123
+
124
+ The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training.
125
+
126
+ The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here.