marksverdhei commited on
Commit
25db008
1 Parent(s): 852c810

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -0
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # T5-define
2
+
3
+ This model is trained to generate word definitions based on the word and a context,
4
+ using a subset of wordnet for all words that have an example and definition.
5
+ The model uses task prompts on the format 'define "[word]": [example sentence]'
6
+
7
+ To my knowledge, this is the first public model trained on a word definition task.
8
+ Similar work: [Zero-shot Word Sense Disambiguation using Sense Definition Embeddings](https://aclanthology.org/P19-1568.pdf)
9
+
10
+ For this project, there are two objectives:
11
+ 1. Explore generalizability on generating word definitions for unseen words
12
+ 2. Explore the utility of word embeddings by definition models
13
+
14
+ How to run:
15
+ ```python
16
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
17
+
18
+ tokenizer = T5Tokenizer.from_pretrained("marksverdhei/t5-base-define")
19
+ model = T5ForConditionalGeneration.from_pretrained("marksverdhei/t5-base-define")
20
+
21
+ prompt = "define \"noseplow\": The children hid as the noseplow drove across the street"
22
+
23
+ ids = tokenizer(prompt, return_tensors="pt").input_ids
24
+ generated_tokens = model.generate(ids)[0][1:-1]
25
+ tokenizer.decode(generated_tokens)
26
+ ```