# T5-define This model is trained to generate word definitions based on the word and a context, using a subset of wordnet for all words that have an example and definition. The model uses task prompts on the format 'define "[word]": [example sentence]' To my knowledge, this is the first public model trained on a word definition task. Similar work: [Zero-shot Word Sense Disambiguation using Sense Definition Embeddings](https://aclanthology.org/P19-1568.pdf) For this project, there are two objectives: 1. Explore generalizability on generating word definitions for unseen words 2. Explore the utility of word embeddings by definition models How to run: ```python from transformers import T5ForConditionalGeneration, T5Tokenizer tokenizer = T5Tokenizer.from_pretrained("marksverdhei/t5-base-define") model = T5ForConditionalGeneration.from_pretrained("marksverdhei/t5-base-define") prompt = "define \"noseplow\": The children hid as the noseplow drove across the street" ids = tokenizer(prompt, return_tensors="pt").input_ids generated_tokens = model.generate(ids)[0][1:-1] tokenizer.decode(generated_tokens) ```