marksverdhei commited on
Commit
314ac53
1 Parent(s): b4c3cec

Add readme

Browse files
Files changed (1) hide show
  1. README.md +53 -0
README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # UnifiedQA-Reddit-SYAC
3
+
4
+ This is an abstractive title answering (TA) / clickbait spoiling model.
5
+ This is a variant of [allenai/unifiedqa-t5-large](https://huggingface.co/allenai/unifiedqa-t5-large), fine-tuned on the Reddit SYAC dataset.
6
+ The model was trained as part of my masters thesis:
7
+
8
+ _Abstractive title answering for clickbait content_
9
+
10
+
11
+ ### Disinformation
12
+ This model has the proven capability of generating, and hallucinating false information.
13
+ Any use of a TA system such as this one should be with knowledge of this risk.
14
+
15
+
16
+ ## Performance
17
+
18
+ ### Intrinsic
19
+
20
+ The following scores is the result of intrinsic evaluation on the Reddit SYAC test set.
21
+ We used a max input length of 2048 and truncated the tokens exceeding this limit.
22
+
23
+ | rouge1 | rouge2 | rougeL | bleu | meteor |
24
+ |:----------|:----------|:----------|:----------|:---------|
25
+ | **44.58** | **23.89** | **43.45** | 17.46 | 36.22 |
26
+
27
+
28
+ ### Qualtiy
29
+ Using human evaluation, we measured model performance by asking the evaluators to rate the models
30
+ on a scale from 1 to 5 on how good their generated answer was for a given clickbait article.
31
+
32
+ Mean quality = 4.065
33
+
34
+ ### Factuality
35
+ We included a factuality assessment to address the issue of generating false information.
36
+ Human raters were asked to place each output in the categories "True", "Irrelevant", and "False".
37
+
38
+ | True | Irrelevant | False |
39
+ |:-------:|:----------:|:--------:|
40
+ | 85% | 7.5% | 7.5% |
41
+
42
+ ## Cite
43
+
44
+ If you use this model, please cite my master's thesis
45
+
46
+ ```
47
+ @mastersthesis{heiervang2022AbstractiveTA
48
+ title={Abstractive title answering for clickbait content},
49
+ author={Markus Sverdvik Heiervang},
50
+ publisher={University of Oslo, Department of Informatics},
51
+ year={2022}
52
+ }
53
+ ```