--- license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - accuracy - f1 model-index: - name: oracle_class_bin results: [] --- # oracle_class_bin This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1283 - Precision: 0.7996 - Recall: 0.8499 - Accuracy: 0.9627 - F1: 0.8240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:------:| | 0.1359 | 0.5606 | 1800 | 0.1183 | 0.7706 | 0.7945 | 0.9546 | 0.7824 | | 0.1129 | 1.1211 | 3600 | 0.1203 | 0.7550 | 0.8529 | 0.9565 | 0.8010 | | 0.0919 | 1.6817 | 5400 | 0.1111 | 0.8016 | 0.8180 | 0.9605 | 0.8098 | | 0.0658 | 2.2423 | 7200 | 0.1142 | 0.8059 | 0.8249 | 0.9616 | 0.8153 | | 0.0731 | 2.8029 | 9000 | 0.1283 | 0.7996 | 0.8499 | 0.9627 | 0.8240 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.1.0 - Datasets 2.19.2 - Tokenizers 0.19.1