add readme update for showing how this model was created, what it looks like in the header, and that it takes ~80s to merge 5 models
Browse files
README.md
CHANGED
@@ -1,3 +1,692 @@
|
|
1 |
---
|
2 |
license: unknown
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: unknown
|
3 |
---
|
4 |
+
|
5 |
+
## Merging models like lego blocks using ddare and ties
|
6 |
+
|
7 |
+
If you want to fine-tune, here's an example Unsloth fine tuning guide for:
|
8 |
+
[Alpaca + TinyLlama + RoPE Scaling full example.ipynb](https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing#scrollTo=LjY75GoYUCB8)
|
9 |
+
|
10 |
+
## How do I generate my own model merges?
|
11 |
+
|
12 |
+
The code below merges the following HuggingFace TinyLlama models:
|
13 |
+
|
14 |
+
- TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
15 |
+
- Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
|
16 |
+
- Doctor-Shotgun/TinyLlama-1.1B-32k
|
17 |
+
- Tensoic/TinyLlama-1.1B-3T-openhermes
|
18 |
+
- Josephgflowers/TinyLlama-3T-Cinder-v1.3
|
19 |
+
|
20 |
+
```python3
|
21 |
+
import transformers
|
22 |
+
import torch
|
23 |
+
import logging
|
24 |
+
from ddare.merge import merge_tensors
|
25 |
+
from ddare.tensor import dare_ties_sparsification, relative_norm, divide_tensor_into_sets
|
26 |
+
from ddare.util import get_device
|
27 |
+
import re
|
28 |
+
from typing import Dict, Tuple, List
|
29 |
+
|
30 |
+
logging.basicConfig(level=logging.INFO)
|
31 |
+
log = logging.getLogger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
def get_models(
|
35 |
+
models: List[str],
|
36 |
+
trust_remote_code: bool,
|
37 |
+
):
|
38 |
+
config = {
|
39 |
+
'torch_dtype': torch.float16,
|
40 |
+
'low_cpu_mem_usage': False,
|
41 |
+
'trust_remote_code': trust_remote_code,
|
42 |
+
}
|
43 |
+
loaded_models = []
|
44 |
+
num_models = len(models)
|
45 |
+
for midx, model_path in enumerate(models):
|
46 |
+
log.info(
|
47 |
+
f"loading model={midx}/{num_models} "
|
48 |
+
f"model={model_path} "
|
49 |
+
)
|
50 |
+
loaded_models.append(
|
51 |
+
transformers.AutoModelForCausalLM.from_pretrained(
|
52 |
+
model_path,
|
53 |
+
**config
|
54 |
+
)
|
55 |
+
)
|
56 |
+
return loaded_models
|
57 |
+
|
58 |
+
|
59 |
+
def pm(
|
60 |
+
model,
|
61 |
+
):
|
62 |
+
keys = model.state_dict().keys()
|
63 |
+
log.info(f"model keys={len(keys)}")
|
64 |
+
for i, k in enumerate(keys):
|
65 |
+
tensor = model.state_dict()[k]
|
66 |
+
log.info(
|
67 |
+
f"{i:3d} {k} shape={tensor.shape} "
|
68 |
+
f"type={tensor.dtype} dev={tensor.device} "
|
69 |
+
f"contig={tensor.is_contiguous()}")
|
70 |
+
|
71 |
+
|
72 |
+
def run_text_test(
|
73 |
+
model,
|
74 |
+
model_path,
|
75 |
+
device: str,
|
76 |
+
question: str,
|
77 |
+
):
|
78 |
+
base_model = model.to(device)
|
79 |
+
log.info(
|
80 |
+
f"loading model={model_path}"
|
81 |
+
)
|
82 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
83 |
+
model_path,
|
84 |
+
torch_dtype=torch.float16)
|
85 |
+
|
86 |
+
inputs = tokenizer(
|
87 |
+
question,
|
88 |
+
return_tensors="pt"
|
89 |
+
).to("cuda")
|
90 |
+
with torch.backends.cuda.sdp_kernel(
|
91 |
+
enable_flash=True,
|
92 |
+
enable_math=False,
|
93 |
+
enable_mem_efficient=False
|
94 |
+
):
|
95 |
+
outputs = base_model.generate(**inputs)
|
96 |
+
log.info(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
97 |
+
base_model = base_model.to("cpu")
|
98 |
+
|
99 |
+
|
100 |
+
def get_layer_type(
|
101 |
+
key: str
|
102 |
+
) -> Tuple[int, str]:
|
103 |
+
matcher = re.compile(r"model.layers.(\d+).(.+)")
|
104 |
+
m = matcher.match(key)
|
105 |
+
if m is None:
|
106 |
+
if "model.norm.weight" == key:
|
107 |
+
return -1, "norm"
|
108 |
+
if "model.embed_tokens.weight" == key:
|
109 |
+
return -1, "embed"
|
110 |
+
if "lm_head.weight" == key:
|
111 |
+
return -1, "head"
|
112 |
+
log.info(f"Unknown key {key}")
|
113 |
+
return -1, "unknown"
|
114 |
+
return int(m.group(1)), m.group(2)
|
115 |
+
|
116 |
+
|
117 |
+
def merge_model_with_ties(
|
118 |
+
models: List[str],
|
119 |
+
model_dst: str,
|
120 |
+
trust_remote_code: bool = True
|
121 |
+
):
|
122 |
+
models = get_models(
|
123 |
+
models=models,
|
124 |
+
trust_remote_code=trust_remote_code,
|
125 |
+
)
|
126 |
+
config = {}
|
127 |
+
result_dict: Dict[str, torch.Tensor] = {}
|
128 |
+
device = get_device()
|
129 |
+
keys = models[0].state_dict().keys()
|
130 |
+
num_keys = len(keys)
|
131 |
+
for k in keys:
|
132 |
+
block, layer_type = get_layer_type(k)
|
133 |
+
m0: torch.Tensor = models[0].state_dict()[k]
|
134 |
+
result = m0.clone()
|
135 |
+
sets = divide_tensor_into_sets(tensor=m0, n_sets=4)
|
136 |
+
|
137 |
+
# get the src layers to merge
|
138 |
+
m = [
|
139 |
+
models[1].state_dict()[k],
|
140 |
+
models[2].state_dict()[k],
|
141 |
+
models[3].state_dict()[k],
|
142 |
+
]
|
143 |
+
|
144 |
+
# build a ratio
|
145 |
+
ratio = {
|
146 |
+
'to_q': 0.0,
|
147 |
+
'to_k': 0.0,
|
148 |
+
'to_v': 0.0,
|
149 |
+
}.get(layer_type, .5)
|
150 |
+
|
151 |
+
norm_ratio = 0.68
|
152 |
+
log.info(
|
153 |
+
f"model={k} {num_keys} shape={m0.shape} "
|
154 |
+
f"dtype={m0.dtype} {m0.device} "
|
155 |
+
f"raio={ratio} "
|
156 |
+
f"contig={m0.is_contiguous()} "
|
157 |
+
f"norm={norm_ratio}")
|
158 |
+
|
159 |
+
# for all tensors
|
160 |
+
for i, tensor in enumerate(m):
|
161 |
+
if layer_type == "to_k":
|
162 |
+
# Get to_q key
|
163 |
+
q_base = models[0].state_dict()[k.replace("to_k", "to_q")]
|
164 |
+
q_merge = models[i].state_dict()[k.replace("to_k", "to_q")]
|
165 |
+
scale = relative_norm(q_merge, q_base)
|
166 |
+
tensor = tensor.to(device) / scale
|
167 |
+
del scale
|
168 |
+
elif layer_type == "to_q":
|
169 |
+
scale = relative_norm(tensor, m0)
|
170 |
+
tensor = tensor.to(device) * scale
|
171 |
+
del scale
|
172 |
+
slice_mask = (
|
173 |
+
sets == i
|
174 |
+
).bool()
|
175 |
+
new_tensor = dare_ties_sparsification(
|
176 |
+
model_a_param=m0,
|
177 |
+
model_b_param=tensor,
|
178 |
+
drop_rate=norm_ratio,
|
179 |
+
ties="sum",
|
180 |
+
rescale="off",
|
181 |
+
device=device,
|
182 |
+
**config)
|
183 |
+
new_tensor = merge_tensors("slerp", m0, tensor, ratio)
|
184 |
+
result = torch.where(slice_mask, new_tensor, result)
|
185 |
+
del new_tensor, slice_mask
|
186 |
+
|
187 |
+
result_dict[k] = result
|
188 |
+
# end of merge
|
189 |
+
|
190 |
+
log.info(
|
191 |
+
f"{config} - done merge saving to file: {model_dst}"
|
192 |
+
)
|
193 |
+
out_model = (
|
194 |
+
transformers.AutoModelForCausalLM.from_pretrained(
|
195 |
+
model_dst,
|
196 |
+
**config
|
197 |
+
)
|
198 |
+
)
|
199 |
+
out_model.state_dict = lambda: result_dict
|
200 |
+
out_model.save_pretrained(model_dst)
|
201 |
+
|
202 |
+
|
203 |
+
def run():
|
204 |
+
log.info("start")
|
205 |
+
model_src = "TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T"
|
206 |
+
model_dst = "matlok/tinyllama-cinder-openhermes-32k"
|
207 |
+
config = {
|
208 |
+
'torch_dtype': torch.float16,
|
209 |
+
'low_cpu_mem_usage': False,
|
210 |
+
'trust_remote_code': True,
|
211 |
+
}
|
212 |
+
models = [
|
213 |
+
model_src,
|
214 |
+
"Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct",
|
215 |
+
"Doctor-Shotgun/TinyLlama-1.1B-32k",
|
216 |
+
"Tensoic/TinyLlama-1.1B-3T-openhermes",
|
217 |
+
"Josephgflowers/TinyLlama-3T-Cinder-v1.3",
|
218 |
+
]
|
219 |
+
merge_model_with_ties(
|
220 |
+
models=models,
|
221 |
+
model_dst=model_dst
|
222 |
+
)
|
223 |
+
log.info(f"loading newly-created file: {model_dst}")
|
224 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
225 |
+
model_dst,
|
226 |
+
**config
|
227 |
+
)
|
228 |
+
pm(model=model)
|
229 |
+
log.info(f"done loading new model: {model} file: {model_dst}")
|
230 |
+
|
231 |
+
|
232 |
+
if __name__ == "__main__":
|
233 |
+
run()
|
234 |
+
```
|
235 |
+
|
236 |
+
|
237 |
+
### Logs
|
238 |
+
|
239 |
+
Here's hte logs
|
240 |
+
|
241 |
+
```
|
242 |
+
Total VRAM 12282 MB, total RAM 85434 MB
|
243 |
+
Set vram state to: NORMAL_VRAM
|
244 |
+
Device: cuda:0 NVIDIA GeForce RTX 4070 Ti : native
|
245 |
+
VAE dtype: torch.bfloat16
|
246 |
+
INFO:__main__:start
|
247 |
+
INFO:__main__:loading model=0/5 model=TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
|
248 |
+
INFO:__main__:loading model=1/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k-Instruct
|
249 |
+
INFO:__main__:loading model=2/5 model=Doctor-Shotgun/TinyLlama-1.1B-32k
|
250 |
+
INFO:__main__:loading model=3/5 model=Tensoic/TinyLlama-1.1B-3T-openhermes
|
251 |
+
INFO:__main__:loading model=4/5 model=Josephgflowers/TinyLlama-3T-Cinder-v1.3
|
252 |
+
INFO:__main__:model=model.embed_tokens.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
253 |
+
INFO:__main__:model=model.layers.0.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
254 |
+
INFO:__main__:model=model.layers.0.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
255 |
+
INFO:__main__:model=model.layers.0.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
256 |
+
INFO:__main__:model=model.layers.0.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
257 |
+
INFO:__main__:model=model.layers.0.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
258 |
+
INFO:__main__:model=model.layers.0.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
259 |
+
INFO:__main__:model=model.layers.0.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
260 |
+
INFO:__main__:model=model.layers.0.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
261 |
+
INFO:__main__:model=model.layers.0.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
262 |
+
INFO:__main__:model=model.layers.1.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
263 |
+
INFO:__main__:model=model.layers.1.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
264 |
+
INFO:__main__:model=model.layers.1.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
265 |
+
INFO:__main__:model=model.layers.1.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
266 |
+
INFO:__main__:model=model.layers.1.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
267 |
+
INFO:__main__:model=model.layers.1.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
268 |
+
INFO:__main__:model=model.layers.1.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
269 |
+
INFO:__main__:model=model.layers.1.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
270 |
+
INFO:__main__:model=model.layers.1.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
271 |
+
INFO:__main__:model=model.layers.2.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
272 |
+
INFO:__main__:model=model.layers.2.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
273 |
+
INFO:__main__:model=model.layers.2.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
274 |
+
INFO:__main__:model=model.layers.2.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
275 |
+
INFO:__main__:model=model.layers.2.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
276 |
+
INFO:__main__:model=model.layers.2.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
277 |
+
INFO:__main__:model=model.layers.2.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
278 |
+
INFO:__main__:model=model.layers.2.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
279 |
+
INFO:__main__:model=model.layers.2.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
280 |
+
INFO:__main__:model=model.layers.3.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
281 |
+
INFO:__main__:model=model.layers.3.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
282 |
+
INFO:__main__:model=model.layers.3.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
283 |
+
INFO:__main__:model=model.layers.3.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
284 |
+
INFO:__main__:model=model.layers.3.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
285 |
+
INFO:__main__:model=model.layers.3.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
286 |
+
INFO:__main__:model=model.layers.3.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
287 |
+
INFO:__main__:model=model.layers.3.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
288 |
+
INFO:__main__:model=model.layers.3.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
289 |
+
INFO:__main__:model=model.layers.4.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
290 |
+
INFO:__main__:model=model.layers.4.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
291 |
+
INFO:__main__:model=model.layers.4.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
292 |
+
INFO:__main__:model=model.layers.4.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
293 |
+
INFO:__main__:model=model.layers.4.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
294 |
+
INFO:__main__:model=model.layers.4.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
295 |
+
INFO:__main__:model=model.layers.4.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
296 |
+
INFO:__main__:model=model.layers.4.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
297 |
+
INFO:__main__:model=model.layers.4.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
298 |
+
INFO:__main__:model=model.layers.5.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
299 |
+
INFO:__main__:model=model.layers.5.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
300 |
+
INFO:__main__:model=model.layers.5.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
301 |
+
INFO:__main__:model=model.layers.5.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
302 |
+
INFO:__main__:model=model.layers.5.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
303 |
+
INFO:__main__:model=model.layers.5.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
304 |
+
INFO:__main__:model=model.layers.5.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
305 |
+
INFO:__main__:model=model.layers.5.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
306 |
+
INFO:__main__:model=model.layers.5.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
307 |
+
INFO:__main__:model=model.layers.6.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
308 |
+
INFO:__main__:model=model.layers.6.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
309 |
+
INFO:__main__:model=model.layers.6.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
310 |
+
INFO:__main__:model=model.layers.6.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
311 |
+
INFO:__main__:model=model.layers.6.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
312 |
+
INFO:__main__:model=model.layers.6.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
313 |
+
INFO:__main__:model=model.layers.6.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
314 |
+
INFO:__main__:model=model.layers.6.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
315 |
+
INFO:__main__:model=model.layers.6.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
316 |
+
INFO:__main__:model=model.layers.7.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
317 |
+
INFO:__main__:model=model.layers.7.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
318 |
+
INFO:__main__:model=model.layers.7.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
319 |
+
INFO:__main__:model=model.layers.7.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
320 |
+
INFO:__main__:model=model.layers.7.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
321 |
+
INFO:__main__:model=model.layers.7.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
322 |
+
INFO:__main__:model=model.layers.7.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
323 |
+
INFO:__main__:model=model.layers.7.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
324 |
+
INFO:__main__:model=model.layers.7.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
325 |
+
INFO:__main__:model=model.layers.8.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
326 |
+
INFO:__main__:model=model.layers.8.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
327 |
+
INFO:__main__:model=model.layers.8.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
328 |
+
INFO:__main__:model=model.layers.8.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
329 |
+
INFO:__main__:model=model.layers.8.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
330 |
+
INFO:__main__:model=model.layers.8.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
331 |
+
INFO:__main__:model=model.layers.8.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
332 |
+
INFO:__main__:model=model.layers.8.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
333 |
+
INFO:__main__:model=model.layers.8.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
334 |
+
INFO:__main__:model=model.layers.9.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
335 |
+
INFO:__main__:model=model.layers.9.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
336 |
+
INFO:__main__:model=model.layers.9.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
337 |
+
INFO:__main__:model=model.layers.9.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
338 |
+
INFO:__main__:model=model.layers.9.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
339 |
+
INFO:__main__:model=model.layers.9.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
340 |
+
INFO:__main__:model=model.layers.9.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
341 |
+
INFO:__main__:model=model.layers.9.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
342 |
+
INFO:__main__:model=model.layers.9.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
343 |
+
INFO:__main__:model=model.layers.10.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
344 |
+
INFO:__main__:model=model.layers.10.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
345 |
+
INFO:__main__:model=model.layers.10.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
346 |
+
INFO:__main__:model=model.layers.10.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
347 |
+
INFO:__main__:model=model.layers.10.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
348 |
+
INFO:__main__:model=model.layers.10.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
349 |
+
INFO:__main__:model=model.layers.10.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
350 |
+
INFO:__main__:model=model.layers.10.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
351 |
+
INFO:__main__:model=model.layers.10.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
352 |
+
INFO:__main__:model=model.layers.11.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
353 |
+
INFO:__main__:model=model.layers.11.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
354 |
+
INFO:__main__:model=model.layers.11.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
355 |
+
INFO:__main__:model=model.layers.11.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
356 |
+
INFO:__main__:model=model.layers.11.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
357 |
+
INFO:__main__:model=model.layers.11.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
358 |
+
INFO:__main__:model=model.layers.11.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
359 |
+
INFO:__main__:model=model.layers.11.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
360 |
+
INFO:__main__:model=model.layers.11.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
361 |
+
INFO:__main__:model=model.layers.12.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
362 |
+
INFO:__main__:model=model.layers.12.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
363 |
+
INFO:__main__:model=model.layers.12.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
364 |
+
INFO:__main__:model=model.layers.12.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
365 |
+
INFO:__main__:model=model.layers.12.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
366 |
+
INFO:__main__:model=model.layers.12.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
367 |
+
INFO:__main__:model=model.layers.12.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
368 |
+
INFO:__main__:model=model.layers.12.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
369 |
+
INFO:__main__:model=model.layers.12.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
370 |
+
INFO:__main__:model=model.layers.13.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
371 |
+
INFO:__main__:model=model.layers.13.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
372 |
+
INFO:__main__:model=model.layers.13.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
373 |
+
INFO:__main__:model=model.layers.13.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
374 |
+
INFO:__main__:model=model.layers.13.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
375 |
+
INFO:__main__:model=model.layers.13.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
376 |
+
INFO:__main__:model=model.layers.13.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
377 |
+
INFO:__main__:model=model.layers.13.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
378 |
+
INFO:__main__:model=model.layers.13.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
379 |
+
INFO:__main__:model=model.layers.14.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
380 |
+
INFO:__main__:model=model.layers.14.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
381 |
+
INFO:__main__:model=model.layers.14.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
382 |
+
INFO:__main__:model=model.layers.14.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
383 |
+
INFO:__main__:model=model.layers.14.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
384 |
+
INFO:__main__:model=model.layers.14.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
385 |
+
INFO:__main__:model=model.layers.14.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
386 |
+
INFO:__main__:model=model.layers.14.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
387 |
+
INFO:__main__:model=model.layers.14.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
388 |
+
INFO:__main__:model=model.layers.15.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
389 |
+
INFO:__main__:model=model.layers.15.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
390 |
+
INFO:__main__:model=model.layers.15.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
391 |
+
INFO:__main__:model=model.layers.15.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
392 |
+
INFO:__main__:model=model.layers.15.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
393 |
+
INFO:__main__:model=model.layers.15.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
394 |
+
INFO:__main__:model=model.layers.15.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
395 |
+
INFO:__main__:model=model.layers.15.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
396 |
+
INFO:__main__:model=model.layers.15.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
397 |
+
INFO:__main__:model=model.layers.16.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
398 |
+
INFO:__main__:model=model.layers.16.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
399 |
+
INFO:__main__:model=model.layers.16.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
400 |
+
INFO:__main__:model=model.layers.16.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
401 |
+
INFO:__main__:model=model.layers.16.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
402 |
+
INFO:__main__:model=model.layers.16.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
403 |
+
INFO:__main__:model=model.layers.16.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
404 |
+
INFO:__main__:model=model.layers.16.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
405 |
+
INFO:__main__:model=model.layers.16.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
406 |
+
INFO:__main__:model=model.layers.17.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
407 |
+
INFO:__main__:model=model.layers.17.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
408 |
+
INFO:__main__:model=model.layers.17.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
409 |
+
INFO:__main__:model=model.layers.17.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
410 |
+
INFO:__main__:model=model.layers.17.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
411 |
+
INFO:__main__:model=model.layers.17.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
412 |
+
INFO:__main__:model=model.layers.17.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
413 |
+
INFO:__main__:model=model.layers.17.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
414 |
+
INFO:__main__:model=model.layers.17.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
415 |
+
INFO:__main__:model=model.layers.18.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
416 |
+
INFO:__main__:model=model.layers.18.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
417 |
+
INFO:__main__:model=model.layers.18.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
418 |
+
INFO:__main__:model=model.layers.18.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
419 |
+
INFO:__main__:model=model.layers.18.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
420 |
+
INFO:__main__:model=model.layers.18.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
421 |
+
INFO:__main__:model=model.layers.18.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
422 |
+
INFO:__main__:model=model.layers.18.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
423 |
+
INFO:__main__:model=model.layers.18.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
424 |
+
INFO:__main__:model=model.layers.19.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
425 |
+
INFO:__main__:model=model.layers.19.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
426 |
+
INFO:__main__:model=model.layers.19.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
427 |
+
INFO:__main__:model=model.layers.19.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
428 |
+
INFO:__main__:model=model.layers.19.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
429 |
+
INFO:__main__:model=model.layers.19.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
430 |
+
INFO:__main__:model=model.layers.19.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
431 |
+
INFO:__main__:model=model.layers.19.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
432 |
+
INFO:__main__:model=model.layers.19.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
433 |
+
INFO:__main__:model=model.layers.20.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
434 |
+
INFO:__main__:model=model.layers.20.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
435 |
+
INFO:__main__:model=model.layers.20.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
436 |
+
INFO:__main__:model=model.layers.20.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
437 |
+
INFO:__main__:model=model.layers.20.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
438 |
+
INFO:__main__:model=model.layers.20.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
439 |
+
INFO:__main__:model=model.layers.20.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
440 |
+
INFO:__main__:model=model.layers.20.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
441 |
+
INFO:__main__:model=model.layers.20.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
442 |
+
INFO:__main__:model=model.layers.21.self_attn.q_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
443 |
+
INFO:__main__:model=model.layers.21.self_attn.k_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
444 |
+
INFO:__main__:model=model.layers.21.self_attn.v_proj.weight 201 shape=torch.Size([256, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
445 |
+
INFO:__main__:model=model.layers.21.self_attn.o_proj.weight 201 shape=torch.Size([2048, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
446 |
+
INFO:__main__:model=model.layers.21.mlp.gate_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
447 |
+
INFO:__main__:model=model.layers.21.mlp.up_proj.weight 201 shape=torch.Size([5632, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
448 |
+
INFO:__main__:model=model.layers.21.mlp.down_proj.weight 201 shape=torch.Size([2048, 5632]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
449 |
+
INFO:__main__:model=model.layers.21.input_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
450 |
+
INFO:__main__:model=model.layers.21.post_attention_layernorm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
451 |
+
INFO:__main__:model=model.norm.weight 201 shape=torch.Size([2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
452 |
+
INFO:__main__:model=lm_head.weight 201 shape=torch.Size([32000, 2048]) dtype=torch.float16 cpu raio=0.5 contig=True norm=0.68
|
453 |
+
INFO:__main__:{} - done merge saving to file: matlok/tinyllama-cinder-openhermes-32k
|
454 |
+
config.json: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 724/724 [00:00<00:00, 6.15MB/s]
|
455 |
+
model.safetensors: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.20G/2.20G [00:57<00:00, 38.0MB/s]
|
456 |
+
generation_config.json: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 133/133 [00:00<00:00, 1.82MB/s]
|
457 |
+
INFO:__main__:loading newly-created file: matlok/tinyllama-cinder-openhermes-32k
|
458 |
+
INFO:__main__:model keys=201
|
459 |
+
INFO:__main__: 0 model.embed_tokens.weight shape=torch.Size([32000, 2048]) type=torch.float16 dev=cpu contig=True
|
460 |
+
INFO:__main__: 1 model.layers.0.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
461 |
+
INFO:__main__: 2 model.layers.0.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
462 |
+
INFO:__main__: 3 model.layers.0.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
463 |
+
INFO:__main__: 4 model.layers.0.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
464 |
+
INFO:__main__: 5 model.layers.0.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
465 |
+
INFO:__main__: 6 model.layers.0.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
466 |
+
INFO:__main__: 7 model.layers.0.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
467 |
+
INFO:__main__: 8 model.layers.0.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
468 |
+
INFO:__main__: 9 model.layers.0.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
469 |
+
INFO:__main__: 10 model.layers.1.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
470 |
+
INFO:__main__: 11 model.layers.1.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
471 |
+
INFO:__main__: 12 model.layers.1.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
472 |
+
INFO:__main__: 13 model.layers.1.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
473 |
+
INFO:__main__: 14 model.layers.1.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
474 |
+
INFO:__main__: 15 model.layers.1.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
475 |
+
INFO:__main__: 16 model.layers.1.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
476 |
+
INFO:__main__: 17 model.layers.1.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
477 |
+
INFO:__main__: 18 model.layers.1.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
478 |
+
INFO:__main__: 19 model.layers.2.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
479 |
+
INFO:__main__: 20 model.layers.2.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
480 |
+
INFO:__main__: 21 model.layers.2.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
481 |
+
INFO:__main__: 22 model.layers.2.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
482 |
+
INFO:__main__: 23 model.layers.2.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
483 |
+
INFO:__main__: 24 model.layers.2.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
484 |
+
INFO:__main__: 25 model.layers.2.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
485 |
+
INFO:__main__: 26 model.layers.2.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
486 |
+
INFO:__main__: 27 model.layers.2.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
487 |
+
INFO:__main__: 28 model.layers.3.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
488 |
+
INFO:__main__: 29 model.layers.3.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
489 |
+
INFO:__main__: 30 model.layers.3.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
490 |
+
INFO:__main__: 31 model.layers.3.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
491 |
+
INFO:__main__: 32 model.layers.3.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
492 |
+
INFO:__main__: 33 model.layers.3.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
493 |
+
INFO:__main__: 34 model.layers.3.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
494 |
+
INFO:__main__: 35 model.layers.3.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
495 |
+
INFO:__main__: 36 model.layers.3.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
496 |
+
INFO:__main__: 37 model.layers.4.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
497 |
+
INFO:__main__: 38 model.layers.4.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
498 |
+
INFO:__main__: 39 model.layers.4.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
499 |
+
INFO:__main__: 40 model.layers.4.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
500 |
+
INFO:__main__: 41 model.layers.4.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
501 |
+
INFO:__main__: 42 model.layers.4.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
502 |
+
INFO:__main__: 43 model.layers.4.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
503 |
+
INFO:__main__: 44 model.layers.4.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
504 |
+
INFO:__main__: 45 model.layers.4.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
505 |
+
INFO:__main__: 46 model.layers.5.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
506 |
+
INFO:__main__: 47 model.layers.5.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
507 |
+
INFO:__main__: 48 model.layers.5.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
508 |
+
INFO:__main__: 49 model.layers.5.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
509 |
+
INFO:__main__: 50 model.layers.5.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
510 |
+
INFO:__main__: 51 model.layers.5.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
511 |
+
INFO:__main__: 52 model.layers.5.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
512 |
+
INFO:__main__: 53 model.layers.5.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
513 |
+
INFO:__main__: 54 model.layers.5.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
514 |
+
INFO:__main__: 55 model.layers.6.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
515 |
+
INFO:__main__: 56 model.layers.6.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
516 |
+
INFO:__main__: 57 model.layers.6.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
517 |
+
INFO:__main__: 58 model.layers.6.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
518 |
+
INFO:__main__: 59 model.layers.6.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
519 |
+
INFO:__main__: 60 model.layers.6.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
520 |
+
INFO:__main__: 61 model.layers.6.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
521 |
+
INFO:__main__: 62 model.layers.6.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
522 |
+
INFO:__main__: 63 model.layers.6.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
523 |
+
INFO:__main__: 64 model.layers.7.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
524 |
+
INFO:__main__: 65 model.layers.7.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
525 |
+
INFO:__main__: 66 model.layers.7.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
526 |
+
INFO:__main__: 67 model.layers.7.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
527 |
+
INFO:__main__: 68 model.layers.7.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
528 |
+
INFO:__main__: 69 model.layers.7.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
529 |
+
INFO:__main__: 70 model.layers.7.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
530 |
+
INFO:__main__: 71 model.layers.7.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
531 |
+
INFO:__main__: 72 model.layers.7.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
532 |
+
INFO:__main__: 73 model.layers.8.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
533 |
+
INFO:__main__: 74 model.layers.8.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
534 |
+
INFO:__main__: 75 model.layers.8.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
535 |
+
INFO:__main__: 76 model.layers.8.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
536 |
+
INFO:__main__: 77 model.layers.8.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
537 |
+
INFO:__main__: 78 model.layers.8.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
538 |
+
INFO:__main__: 79 model.layers.8.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
539 |
+
INFO:__main__: 80 model.layers.8.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
540 |
+
INFO:__main__: 81 model.layers.8.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
541 |
+
INFO:__main__: 82 model.layers.9.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
542 |
+
INFO:__main__: 83 model.layers.9.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
543 |
+
INFO:__main__: 84 model.layers.9.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
544 |
+
INFO:__main__: 85 model.layers.9.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
545 |
+
INFO:__main__: 86 model.layers.9.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
546 |
+
INFO:__main__: 87 model.layers.9.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
547 |
+
INFO:__main__: 88 model.layers.9.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
548 |
+
INFO:__main__: 89 model.layers.9.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
549 |
+
INFO:__main__: 90 model.layers.9.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
550 |
+
INFO:__main__: 91 model.layers.10.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
551 |
+
INFO:__main__: 92 model.layers.10.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
552 |
+
INFO:__main__: 93 model.layers.10.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
553 |
+
INFO:__main__: 94 model.layers.10.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
554 |
+
INFO:__main__: 95 model.layers.10.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
555 |
+
INFO:__main__: 96 model.layers.10.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
556 |
+
INFO:__main__: 97 model.layers.10.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
557 |
+
INFO:__main__: 98 model.layers.10.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
558 |
+
INFO:__main__: 99 model.layers.10.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
559 |
+
INFO:__main__:100 model.layers.11.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
560 |
+
INFO:__main__:101 model.layers.11.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
561 |
+
INFO:__main__:102 model.layers.11.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
562 |
+
INFO:__main__:103 model.layers.11.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
563 |
+
INFO:__main__:104 model.layers.11.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
564 |
+
INFO:__main__:105 model.layers.11.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
565 |
+
INFO:__main__:106 model.layers.11.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
566 |
+
INFO:__main__:107 model.layers.11.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
567 |
+
INFO:__main__:108 model.layers.11.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
568 |
+
INFO:__main__:109 model.layers.12.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
569 |
+
INFO:__main__:110 model.layers.12.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
570 |
+
INFO:__main__:111 model.layers.12.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
571 |
+
INFO:__main__:112 model.layers.12.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
572 |
+
INFO:__main__:113 model.layers.12.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
573 |
+
INFO:__main__:114 model.layers.12.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
574 |
+
INFO:__main__:115 model.layers.12.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
575 |
+
INFO:__main__:116 model.layers.12.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
576 |
+
INFO:__main__:117 model.layers.12.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
577 |
+
INFO:__main__:118 model.layers.13.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
578 |
+
INFO:__main__:119 model.layers.13.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
579 |
+
INFO:__main__:120 model.layers.13.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
580 |
+
INFO:__main__:121 model.layers.13.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
581 |
+
INFO:__main__:122 model.layers.13.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
582 |
+
INFO:__main__:123 model.layers.13.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
583 |
+
INFO:__main__:124 model.layers.13.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
584 |
+
INFO:__main__:125 model.layers.13.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
585 |
+
INFO:__main__:126 model.layers.13.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
586 |
+
INFO:__main__:127 model.layers.14.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
587 |
+
INFO:__main__:128 model.layers.14.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
588 |
+
INFO:__main__:129 model.layers.14.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
589 |
+
INFO:__main__:130 model.layers.14.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
590 |
+
INFO:__main__:131 model.layers.14.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
591 |
+
INFO:__main__:132 model.layers.14.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
592 |
+
INFO:__main__:133 model.layers.14.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
593 |
+
INFO:__main__:134 model.layers.14.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
594 |
+
INFO:__main__:135 model.layers.14.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
595 |
+
INFO:__main__:136 model.layers.15.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
596 |
+
INFO:__main__:137 model.layers.15.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
597 |
+
INFO:__main__:138 model.layers.15.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
598 |
+
INFO:__main__:139 model.layers.15.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
599 |
+
INFO:__main__:140 model.layers.15.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
600 |
+
INFO:__main__:141 model.layers.15.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
601 |
+
INFO:__main__:142 model.layers.15.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
602 |
+
INFO:__main__:143 model.layers.15.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
603 |
+
INFO:__main__:144 model.layers.15.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
604 |
+
INFO:__main__:145 model.layers.16.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
605 |
+
INFO:__main__:146 model.layers.16.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
606 |
+
INFO:__main__:147 model.layers.16.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
607 |
+
INFO:__main__:148 model.layers.16.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
608 |
+
INFO:__main__:149 model.layers.16.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
609 |
+
INFO:__main__:150 model.layers.16.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
610 |
+
INFO:__main__:151 model.layers.16.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
611 |
+
INFO:__main__:152 model.layers.16.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
612 |
+
INFO:__main__:153 model.layers.16.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
613 |
+
INFO:__main__:154 model.layers.17.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
614 |
+
INFO:__main__:155 model.layers.17.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
615 |
+
INFO:__main__:156 model.layers.17.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
616 |
+
INFO:__main__:157 model.layers.17.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
617 |
+
INFO:__main__:158 model.layers.17.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
618 |
+
INFO:__main__:159 model.layers.17.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
619 |
+
INFO:__main__:160 model.layers.17.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
620 |
+
INFO:__main__:161 model.layers.17.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
621 |
+
INFO:__main__:162 model.layers.17.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
622 |
+
INFO:__main__:163 model.layers.18.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
623 |
+
INFO:__main__:164 model.layers.18.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
624 |
+
INFO:__main__:165 model.layers.18.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
625 |
+
INFO:__main__:166 model.layers.18.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
626 |
+
INFO:__main__:167 model.layers.18.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
627 |
+
INFO:__main__:168 model.layers.18.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
628 |
+
INFO:__main__:169 model.layers.18.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
629 |
+
INFO:__main__:170 model.layers.18.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
630 |
+
INFO:__main__:171 model.layers.18.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
631 |
+
INFO:__main__:172 model.layers.19.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
632 |
+
INFO:__main__:173 model.layers.19.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
633 |
+
INFO:__main__:174 model.layers.19.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
634 |
+
INFO:__main__:175 model.layers.19.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
635 |
+
INFO:__main__:176 model.layers.19.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
636 |
+
INFO:__main__:177 model.layers.19.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
637 |
+
INFO:__main__:178 model.layers.19.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
638 |
+
INFO:__main__:179 model.layers.19.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
639 |
+
INFO:__main__:180 model.layers.19.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
640 |
+
INFO:__main__:181 model.layers.20.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
641 |
+
INFO:__main__:182 model.layers.20.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
642 |
+
INFO:__main__:183 model.layers.20.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
643 |
+
INFO:__main__:184 model.layers.20.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
644 |
+
INFO:__main__:185 model.layers.20.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
645 |
+
INFO:__main__:186 model.layers.20.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
646 |
+
INFO:__main__:187 model.layers.20.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
647 |
+
INFO:__main__:188 model.layers.20.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
648 |
+
INFO:__main__:189 model.layers.20.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
649 |
+
INFO:__main__:190 model.layers.21.self_attn.q_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
650 |
+
INFO:__main__:191 model.layers.21.self_attn.k_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
651 |
+
INFO:__main__:192 model.layers.21.self_attn.v_proj.weight shape=torch.Size([256, 2048]) type=torch.float16 dev=cpu contig=True
|
652 |
+
INFO:__main__:193 model.layers.21.self_attn.o_proj.weight shape=torch.Size([2048, 2048]) type=torch.float16 dev=cpu contig=True
|
653 |
+
INFO:__main__:194 model.layers.21.mlp.gate_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
654 |
+
INFO:__main__:195 model.layers.21.mlp.up_proj.weight shape=torch.Size([5632, 2048]) type=torch.float16 dev=cpu contig=True
|
655 |
+
INFO:__main__:196 model.layers.21.mlp.down_proj.weight shape=torch.Size([2048, 5632]) type=torch.float16 dev=cpu contig=True
|
656 |
+
INFO:__main__:197 model.layers.21.input_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
657 |
+
INFO:__main__:198 model.layers.21.post_attention_layernorm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
658 |
+
INFO:__main__:199 model.norm.weight shape=torch.Size([2048]) type=torch.float16 dev=cpu contig=True
|
659 |
+
INFO:__main__:200 lm_head.weight shape=torch.Size([32000, 2048]) type=torch.float16 dev=cpu contig=True
|
660 |
+
INFO:__main__:done loading new model: LlamaForCausalLM(
|
661 |
+
(model): LlamaModel(
|
662 |
+
(embed_tokens): Embedding(32000, 2048)
|
663 |
+
(layers): ModuleList(
|
664 |
+
(0-21): 22 x LlamaDecoderLayer(
|
665 |
+
(self_attn): LlamaSdpaAttention(
|
666 |
+
(q_proj): Linear(in_features=2048, out_features=2048, bias=False)
|
667 |
+
(k_proj): Linear(in_features=2048, out_features=256, bias=False)
|
668 |
+
(v_proj): Linear(in_features=2048, out_features=256, bias=False)
|
669 |
+
(o_proj): Linear(in_features=2048, out_features=2048, bias=False)
|
670 |
+
(rotary_emb): LlamaRotaryEmbedding()
|
671 |
+
)
|
672 |
+
(mlp): LlamaMLP(
|
673 |
+
(gate_proj): Linear(in_features=2048, out_features=5632, bias=False)
|
674 |
+
(up_proj): Linear(in_features=2048, out_features=5632, bias=False)
|
675 |
+
(down_proj): Linear(in_features=5632, out_features=2048, bias=False)
|
676 |
+
(act_fn): SiLU()
|
677 |
+
)
|
678 |
+
(input_layernorm): LlamaRMSNorm()
|
679 |
+
(post_attention_layernorm): LlamaRMSNorm()
|
680 |
+
)
|
681 |
+
)
|
682 |
+
(norm): LlamaRMSNorm()
|
683 |
+
)
|
684 |
+
(lm_head): Linear(in_features=2048, out_features=32000, bias=False)
|
685 |
+
) file: matlok/tinyllama-cinder-openhermes-32k
|
686 |
+
|
687 |
+
real 1m18.070s
|
688 |
+
user 2m10.228s
|
689 |
+
sys 0m14.040s
|
690 |
+
```
|
691 |
+
|
692 |
+
Note: code sample above was modified from [this very helpful GitHub gist](https://gist.github.com/maldevide/08829eada04ad9bd78e46c1a3787d42b)
|