--- license: cc-by-nc-4.0 --- # tsubaki-10b-instruction-sft # Overview This repository provides a Japanese-centric multilingual GPT-NeoX model of 10 billion parameters. * **Library** The model was trained using code based on [EleutherAI/gpt-neox](https://github.com/EleutherAI/gpt-neox). * **Model architecture** A 36-layer, 4864-hidden-size transformer-based language model. * **Pre-training** The model was trained on around **600B** tokens from a mixture of the following corpora - [Japanese C4](https://huggingface.co/datasets/mc4) - [The Pile](https://huggingface.co/datasets/EleutherAI/pile) * **Instruction-supervised-finetuning** The model was finetuned on a subset records from a mixture of the following dataset - [Alpaca (English)](https://github.com/gururise/AlpacaDataCleaned/blob/main/alpaca_data_cleaned.json) - [Alpaca (Japanese translation)](https://github.com/shi3z/alpaca_ja/blob/main/alpaca_cleaned_ja.json) - [Flan 2021](https://huggingface.co/datasets/conceptofmind/flan2021_submix_original) - [Flan CoT](https://huggingface.co/datasets/conceptofmind/cot_submix_original) - [Flan Dialog](https://huggingface.co/datasets/conceptofmind/dialog_submix_original) * **Model Series** | Variant | Link | | :-- | :--| | tsubaki-10b-instruction-sft | https://huggingface.co/Kojima777/tsubaki-10b-instruction-sft | | tsubaki-10b | https://huggingface.co/Kojima777/tsubaki-10b | * **Authors** Takeshi Kojima --- # Benchmarking * **Japanese benchmark** - *The 4-task average accuracy is based on results of JCommonsenseQA, JNLI, MARC-ja, and JSQuAD.* | Model | Average | JCommonsenseQA | JNLI | MARC-ja | JSQuAD | | :-- | :-- | :-- | :-- | :-- | :-- | | tsubaki-10b-instruction-sft | 79.04 | 74.35 | 65.65 | 96.06 | 80.09 | | tsubaki-10b | 67.27 | 65.86 | 54.19 | 84.49 | 64.54 | --- # How to use the model ~~~~python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("Kojima777/tsubaki-10b-instruction-sft", use_fast=False) model = AutoModelForCausalLM.from_pretrained("Kojima777/tsubaki-10b-instruction-sft") if torch.cuda.is_available(): model = model.to("cuda") text = "大規模言語モデルについて説明してください。" text = f'以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。\n\n### 指示:\n{text}\n\n### 応答:' token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_new_tokens=100, do_sample=True, temperature=0.6, top_p=0.9, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) ~~~~ --- # Licenese [cc-by-nc-4.0](https://creativecommons.org/licenses/by-nc/4.0/)